Preview

Труды Института системного программирования РАН

Расширенный поиск

Виртуальные площадки в алгоритме излучательности

https://doi.org/10.15514/ISPRAS-2022-34(3)-4

Аннотация

Создание упрощенной геометрии для метода излучательности является трудоёмким процессом, который трудно автоматизировать в общем случае. В качестве альтернативного решения этой проблемы в данной работе предлагается модификация метода излучательности с использованием виртуальных площадок. Виртуальные площадки – это элементы геометрии, полученные кластеризацией некоторых точек исходной геометрии, для которых производится вычисление освещения. Они имеют нормаль, цвет и площадь, но не имеют геометрического представления, представляя собой облако точек внутри вокселя. По сравнению с оригинальным методом излучательности предложенный метод, не снижая производительности вычисления глобального освещения, увеличивает его точность.

Об авторах

Александр Станиславович ЩЕРБАКОВ
Московский государственный университет имени М.В. Ломоносова
Россия

Аспирант факультета Вычислительной математики и кибернетики, лаборатории компьютерной графики и мультимедиа



Владимир Александрович ФРОЛОВ
Московский государственный университет имени М.В. Ломоносова, Институт прикладной математики имени М.В. Келдыша РАН
Россия

Кандидат физико-математических наук, старший научный сотрудник ИПМ РАН, научный сотрудник факультета ВМК МГУ



Владимир Александрович ГАЛАКТИОНОВ
Институт прикладной математики имени М.В. Келдыша РАН
Россия

Доктор физико-математических наук, профессор, заведующий отделом компьютерной графики и вычислительной оптики



Список литературы

1. Sillion F. X., Puech C. Radiosity and global illumination. Morgan Kaufmann, San Francisco, 1994. 251p.

2. Hanrahan P., Salzman D., and Aupperle L. A rapid hierarchical radiosity algorithm. ACM SIGGRAPH Computer Graphics, vol. 25, issue 4, 1991, pp. 197-206.

3. Cohen M.F., Chen S.E. et al. A progressive refinement approach to fast radiosity image generation. In Proc. of the 15th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’88), 1988, pp. 75-84.

4. Andújar C. Geometry Simplification. Research report Nr LSI-99-2-R, Universitat Politècnica de Catalunya, Barcelona, 1999, 73 p.

5. Scherzer D., Wimmer M., Purgathofer W. A Survey of Real-Time Hard Shadow Mapping Methods. Computer Graphics Forum, vol. 30, issue 1, 2011. pp. 169-186.

6. Keller A., McGuire M. et al. Ray Tracing Gems. High-quality and real-time rendering with DXR and other APIs. Apress, 2019, 651 p.

7. Hasenfratz J.-M., Lapierre M. et al. A survey of RealTime Soft Shadows Algorithms. Computer Graphics Forum, vol. 22, issue 4, 2003, pp.753-774.

8. Keller A. Instant Radiosity. In Proc. of the 24th Annual Conference on Computer Graphics and Interactive Techniques, 1997, pp. 49-56.

9. Dachsbacher C., Stamminger M. Reflective shadow maps. In Proc. of the 2005 Symposium on Interactive 3D Graphics and Games, 2005. pp. 203-231.

10. Grosch T., Ritschel T. Screen-Space Directional Occlusion. In GPU Pro: Advanced Rendering Techniques, A K Peters/CRC Press, 2010, 16 p.

11. Mittring, M. Finding next gen: Cry Engine 2. In ACM SIGGRAPH 2007 courses, 2007, pp. 97-121.

12. Jimenez. J, Wu X.-C. et al. Practical Real-Time Strategies for Accurate Indirect Occlusion. Technical Memo ATVI-TR-19-01, Activision, 2016.

13. Kaplanyan A. and Dachsbacher C. 2010. Cascaded Light Propagation Volumes for Real-Time Indirect Illumination. In Proc. of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D '10), 2010, pp. 99-107.

14. Crassin C., Neyret F. et al. Interactive Indirect Illumination Using Voxel Cone Tracing: a Preview. In Proc. of the Symposium on Interactive 3D Graphics and Games (I3D '11), 2011, p. 207.

15. Mara M., McGuire M. et al. An efficient denoising algorithm for global illumination. In Proc. of High Performance Graphics (HPG ’17), 2017, article no. 3, 7 p.

16. Shi W., Caballero J. et al. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 1874-1883.

17. Green R. Spherical harmonic lighting: The gritty details. Technical report, Sony Computer Entertainment America, 2003, 47 p.

18. Manson, J. and Sloan, P.-P. Fast Filtering of Reflection Probes. Computer Graphics Forum, vol. 35, issue 4, 2016, pp. 119-127.

19. McGuire M., Mara M. et al. Real-Time Global Illumination Using Precomputed Light Field Probes. In Proc. of the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D '17), 2017, article no. 2, 11 p.

20. Tabellion E. and Lamorlette A. An Approximate Global Illumination System for Computer-Generated Films. ACM Transactions on Graphics, vol. 23, issue 3, 2004, pp 469-476

21. RTX Global Illumination (RTXGI). URL: https://developer.nvidia.com/rtxgi.

22. Flatt D. AMD Radeon Rays Integrated into Unity's GPU Progressive Lightmapper. URL: https://blogs.unity3d.com/2018/03/29/amd-radeon-rays-integrated-into-unitys-gpu-progressive-lightmapper/.

23. Bush J. Quake Lightmaps. URL: https://jbush001.github.io/ 2015/06/11/quake-lightmaps.html.

24. Sloan P.-P., Kautz J., and Snyder J. Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments. ACM Transactions on Graphics, vol. 21, issue 3, 2002, pp 527-536.

25. Ren P., Wang J. et al. Global Illumination with Radiance Regression Functions. ACM Transactions on Graphics, vol. 32, issue 4, 2013, article no. 130, 12 p.

26. Thomas M. M., Forbes A. Deep Illumination: Approximating Dynamic Global Illumination with Generative Adversarial Network. arXiv:1710.09834, 2017. 10 p.

27. Alliez P., Ucelli G. et al. Recent Advances in Remeshing of Surfaces. In Shape Analysis and Structuring. Mathematics and Visualization. Springer, 2008, pp 53-82.

28. Cheng B., Liu Q. et al. Building Simplification Using Backpropagation Neural Networks: A Combination of Cartographers' Expertise and Raster-Based Local Perception. GIScience & Remote Sensing, vol. 50, issue 5, 2013, pp. 527-542.

29. Щербаков А.С. Расчет освещённости при помощи метода излучательности на графических процессорах для интерактивных приложений. Сборник тезисов лучших выпускных работ факультета ВМК МГУ 2017 года, Москва, 2017, стр. 95–97 / Shcherbakov A.S. Illuminance Calculation Using the Radiance Method on GPUs for Interactive Applications. Collection of abstracts of the best graduation papers of the faculty of the CMC MSU in 2017, Moscow, 2017, pp. 95–97 (in Russian).

30. Lorensen W., Cline H. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. ACM SIGGRAPH Computer Graphics, vol. 21, issue 4, 1987, pp 163-169.

31. Anders K.-H. Level of Detail Generation of 3D Building Groups by Aggregation and Typefication. In Proc. of the XXII International Cartographic Conference, 2005, 8 p.

32. Pfister H., Zwicker M. et al. Surfels: Surface Elements as Rendering Primitives. In Proc. of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 2000, pp. 335-342.

33. Bunnell M., Pellacini F. URL: Shadow Map Antialiasing https://developer.nvidia.com/gpugems/gpugems/part-ii-lighting-and-shadows/chapter-11-shadow-map-antialiasing

34. Rai P., Shubha S. A Survey of Clustering Techniques. International Journal of Computer Applications, vol. 7, no. 12, 2010, article no. 1, 5 p.


Рецензия

Для цитирования:


ЩЕРБАКОВ А.С., ФРОЛОВ В.А., ГАЛАКТИОНОВ В.А. Виртуальные площадки в алгоритме излучательности. Труды Института системного программирования РАН. 2022;34(3):47-60. https://doi.org/10.15514/ISPRAS-2022-34(3)-4

For citation:


SHCHERBAKOV A., FROLOV V., GALAKTIONOV V. Virtual patches approach for radiosity. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2022;34(3):47-60. (In Russ.) https://doi.org/10.15514/ISPRAS-2022-34(3)-4



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)