Preview

Труды Института системного программирования РАН

Расширенный поиск

Моделирование взаимосвязи между заболеваниями с помощью взаимодействующих потоковых X-машин

https://doi.org/10.15514/ISPRAS-2022-34(6)-11

Аннотация

Мир движется к альтернативной медицине и изменению методов лечения, контроля и профилактики хронических заболеваний. В последние несколько десятилетий диаграммные модели широко использовались для описания и понимания поведения биологических организмов (биологических агентов) благодаря их простоте и полноте. Однако эти модели могут предложить только статическую картину соответствующих биологических систем с ограниченной масштабируемостью. В результате растет спрос на интеграцию формализма в более динамичные формы, которые могут быть более масштабируемыми и могут охватывать сложные процессы, зависящие от времени. В этой статье мы представляем общую модель на основе теорий X-машин и взаимодействующих X-машин. Мы провели эксперимент по моделированию реального заболевания на примере диабета II типа. Результаты эксперимента демонстрируют, что предложенный метод способен моделировать хронические заболевания.

Об авторах

Дилшан ДЖАЯТИЛАКЕ
Университет Западной Англии
Великобритания

Магистр наук



Хоа ФУНГ
Университет Западной Англии
Великобритания

Аспирант



Эммануэль ОГУНШИЛЕ
Университет Западной Англии
Великобритания

Кандидат наук, старший преподаватель



Мехмет АЙДИН
Университет Западной Англии
Великобритания

Кандидат наук, старший преподаватель



Список литературы

1. S. Licher, A. Heshmatollah et al. Lifetime risk and multimorbidity of non-communicable diseases and disease-free life expectancy in the general population: A population-based cohort study. PLOS Medicine, vol. 16, issue 2, 2019, article id e1002741.

2. J.F. Ferguson, H. Allayee et al. Nutrigenomics, the Microbiome, and Gene-Environment Interactions: New Directions in Cardiovascular Disease Research, Prevention, and Treatment: A Scientific Statement from the American Heart Association. Circulation: Genomic and Precision Medicine, vol. 9, issue 3, 2016, pp. 291-313.

3. S. Jayatilake, E. Ogunshile et al. Modelling Diseases with Stream X-Machine. In Proc. of the 9th International Conference in Software Engineering Research and Innovation (CONISOFT), 2021, pp. 61-68.

4. B.M. Sörensen et al. Prediabetes and Type 2 Diabetes are Associated with Generalized Microvascular Dysfunction: The Maastricht Study, Circulation, vol. 134, issue 18, 2016, pp. 1339–1352.

5. S.F. Hossain, M. Huang et al. Inter Disease Relations Based on Human Biomarkers by Network Analysis, In Proc. of the IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), 2019, pp. 103-108.

6. J. Seo, B. Choi et al. The relationship between multiple chronic diseases and depressive symptoms among middle-aged and elderly populations: results of a 2009 korean community health survey of 156,747 participants. BMC Public Health, vol. 17, no. 1, 2017, article id 8442.

7. C.D. Filippo, M. Di Paola et al. Diet, Environments, and Gut Microbiota. A Preliminary Investigation in Children Living in Rural and Urban Burkina Faso and Italy. Frontiers in Microbiology, vol. 8, 2017, article id. 1979

8. E.A. Finkelstein, J.G. Trogdon et al. Annual Medical Spending Attributable to Obesity: Payer-And Service-Specific Estimates. Health Affairs, vol. 28, 2009, pp. w822-–w831.

9. J. Bowen and V. Stavridou. Safety-critical systems, formal methods and standards. Software Engineering Journal, vol. 8, issue 4, 1993, pp. 182-183.

10. J.S. Ostroff. Formal methods for the specification and design of real-time safety critical systems. Journal of Systems and Software, vol. 18, issue 1, 1992, pp. 33-60.

11. S. Gerhart, D. Craigen, and T. Ralston. Experience with formal methods in critical systems. IEEE Software, vol. 11, issue 1, 1994, pp. 21-28.

12. S. Eilenberg, Automata, languages, and machines. Academic Press, 1974, 450 p.

13. F. Ipate and M. Holcombe. A method for refining and testing generalised machine specifications. International Journal of Computer Mathematics, vol. 68, issue 3-4, 1998, pp. 197-219.

14. F. Ipate, M. Holcombe. Specification and Testing Using Generalised Machines: A Presentation and a Case Study. Software Testing, Verification and Reliability, vol. 8, issue 2, 1998, pp. 61-81.

15. M.A. Boemo, L. Cardelli, and C.A. Nieduszynski. The Beacon Calculus: A formal method for the flexible and concise modelling of biological systems. PLOS Computational Biology, vol. 16, issue 3, 2020, article id. e1007651.

16. I. Stamatopoulou, I. Sakellariou et al. Formal modelling for in-silico experiments with social insect colonies. In Proc. of the 11th Panhellenic Conference in Informatics (PCI'07), vol. B, 2007, pp. 79-89.

17. S. Coakley, R. Smallwood, and M. Holcombe. Using x-machines as a formal basis for describing agents in agent-based modelling. In Proc. of the Spring Simulation Multiconference 2006 (SpringSim'06), 2006, pp. 33-40.

18. T. Balanescu, A. Cowling et al. Communicating Stream X-Machines Systems are no more than X-Machines. Journal of Universal Computer Science, vol. 5, issue 9, 1999, pp. 494-507.

19. H. Georgescu and C. Vertan. A New Approach to Communicating X-Machine Systems. Journal of Universal Computer Science, vol. 6, issue 5, 2000, pp. 490-502.

20. J. Barnard. COMX: a design methodology using communicating X-machines. Information and Software Technology, vol. 40, issue 5-6, 1998, pp. 271-280.

21. P. Kefalas, G. Eleftherakis, and E. Kehris. Communicating X-Machines: From Theory to Practice. Lecture Notes in Computer Science, vol. 2563, 2003, pp. 316-335.

22. M.A. Schaub, T.A. Henzinger, and J. Fisher. Qualitative networks: a symbolic approach to analyze biological signaling networks. BMC Systems Biology, vol. 1, 2007, article no. 4.

23. A. Naldi, D. Thieffry, and C. Chaouiya. Decision Diagrams for the Representation and Analysis of Logical Models of Genetic Networks. Lecture Notes in Computer Science, vol. 4695, 2007, pp. 233-247.

24. N. Miskov-Zivanov, P. Wei, and C. S. C. Loh. THiMED: Time in Hierarchical Model Extraction and Design. Lecture Notes in Computer Science, vol. 8859, 2014, pp. 260-263.

25. S. Wolfram. A New Kind of Science. Available at: https://www.wolframscience.com/, accessed May 25, 2021.

26. I. Stamatopoulou, M. Gheorghe, and P. Kefalas. Modelling Dynamic Organization of Biology-Inspired Multi-Agent Systems with Communicating X-Machines and Population P Systems. Lecture Notes in Computer Science, vol. 3365, 2005, pp. 389-403.

27. A. Rashid, O. Hasan et al. Formal reasoning about systems biology using theorem proving. PLOS ONE, vol. 12, issue 7, 2017, article id. e0180179.

28. Q. Wang. Formal Methods for Biological Systems: Languages, Algorithms, and Applications. Ph.D. Thesis. Carnegie Mellon University, 2016, 149 p.

29. Q. Wang and E. M. Clarke. Formal modeling of biological systems. In Proc. of the 2016 IEEE International High Level Design Validation and Test Workshop (HLDVT), 2016, pp. 178-184.

30. J. Mortimer, ed. The FMS Report: Ingersoll Engineers. Springer, 1984, 180 p.

31. C. Chaouiyaю Petri net modelling of biological networksю Briefings in Bioinformatics, vol. 8, issue. 4, 2007, pp. 210-219,

32. T. Koster, P. J. Giabbanelli, and A. Uhrmacher. Performance and Soundness of Simulation: A Case Study Based on a Cellular Automaton for In-Body Spread of HIV. In Proc. of the 2020 Winter Simulation Conference (WSC), 2020, pp. 2281-2292.

33. G. Pardini. Formal modelling and simulation of biological systems with spatiality. Ph.D. Thesis. Università di Pisa, 2011, 145 p.

34. D. Dranidis, K. Bratanis, and F. Ipate. JSXM: A Tool for Automated Test Generation. Lecture Notes in Computer Science, vol. 7504, 2012, pp. 352-366.

35. W. Hao, H.M. Komar et al. Mathematical model of chronic pancreatitis. Proceedings of the National Academy of Sciences (PNAS), vol. 114, issue 19, 2017, pp. 5011-5016.

36. M.B. Alazzam, A.A. Hamad, and A.S. AlGhamdi. Dynamic Mathematical Models’ System and Synchronization. Mathematical Problems in Engineering, 2021, article id. 6842071.

37. A. De Gaetano, T. Hardy et al. Mathematical models of diabetes progression. American Journal of Physiology-Endocrinology and Metabolism, vol. 295, issue 6, pp. E1462–E1479.

38. D. Wodarz and M.A. Nowak. Mathematical models of HIV pathogenesis and treatment. BioEssays, vol. 24, issue 12, 2002, pp. 1178-1187.

39. M. Buysschaert, J.-L. Medina et al. Definitions (and Current Controversies) of Diabetes and Prediabetes. Current Diabetes Reviews, vol. 12, issue 1, 2015, pp. 8-13.

40. S. M. Haffner. Pre-diabetes, insulin resistance, inflammation and CVD risk. Diabetes Research and Clinical Practice, vol. 61, 2003, pp. S9-S18.


Рецензия

Для цитирования:


ДЖАЯТИЛАКЕ Д., ФУНГ Х., ОГУНШИЛЕ Э., АЙДИН М. Моделирование взаимосвязи между заболеваниями с помощью взаимодействующих потоковых X-машин. Труды Института системного программирования РАН. 2022;34(6):147-164. https://doi.org/10.15514/ISPRAS-2022-34(6)-11

For citation:


JAYATILAKE D., PHUNG Kh., OGUNSHILE E., AYDIN M. Modelling Interrelationship between Diseases with Communicating Stream X-Machines. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2022;34(6):147-164. https://doi.org/10.15514/ISPRAS-2022-34(6)-11



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)