MBT 2006

Formal Conformance Testing of Systems with
Refused Inputs and Forbidden Actions

Igor B. Bourdonov 12,
Alexander S. Kossatchev 3, and Victor V. Kuliamin '*

Institute for System Programming of Russian Academy of Sciences
1009004, B. Kommunisticheskaya, 25, Moscow, Russia

Abstract

The article introduces an extension of the well-known conformance relation zoco on
labeled transition systems (LTS) with refused inputs and forbidden actions. This
extension helps to apply the usual formal testing theory based on LTS models to
incompletely specified systems, which are often met in practice. Another topic con-
cerned in the article is compositional conformance. More precisely, we try to define
a completion operation that turns any LTS into input-enabled one having the same
set of 2oco-conforming implementations. Such a completion enforces preservation
of Zoco conformance by parallel composition operation on LTSes.

Key words: Formal testing, conformance testing, LTS,
implementation relation, refusals, zoco.

1 Introduction

In the modern world a large part of human activities is controlled by various
computer-based systems. Reliability and quality of such systems become ur-
gent for dependable evolution of our society. One of the tools that help us to
ensure system quality is conformance testing. Conformance testing in general
is an activity that checks conformance between the real behavior of software
or hardware system and the requirements to this behavior. To make results of
conformance testing more sound and convincing the testing process needs in

1 This work is partially supported by REBR grants 05-01-00999-a and 04-07-90386-b, by
grant of Russian Science Support Foundation, and by Program 4 of Mathematics Branch
of RAS.
2 Email: igor@ispras.ru
3 Email: kos@ispras.ru
4 Email: kuliamin@ispras.ru

This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

a formal framework, including formalism for description of requirements and
formal definition of conformance relation.

To make the reasoning about conformance rigorous one models both the
actual behavior of the system under test (SUT) and the requirements to it
in some formalism. The choice of such formalism is directed by a class of
systems we need to describe with it. It is preferable to use a theory that allows
reasoning about a wide range of software and hardware systems of practical
significance. Labeled transition systems (LTS) formalism is a good candidate,
and it is used successfully for a long time to model rather complex behavior
of distributed software and hardware units, including concurrency aspects.
LTSes also serve as semantic metamodel for various process calculi, such as
CSP [1] and CCS [2], and for formal languages actively applied in distributed
software and hardware verification, e.g. SDL, LOTOS, and Estelle.

During testing one usually distinguishes between inputs and outputs of
the SUT. A tester provides the former to it, it provides the latter to the
tester. So, LTS model should be regarded as IOLTS, i.e. input-output labeled
transition system, where labels on transitions are partitioned into input and
output symbols.

By a specification one means a description of requirements to SUT’s be-
havior in terms of the formalism chosen, e.g. an LTS modeling the required
behavior. Since the requirements are represented formally, one can speak
about formal conformance between them and the actual behavior of the SUT,
but only if this actual behavior also has some formal representation. Usually
the basic test hypothesis states that the actual behavior of the SUT can be
adequately described by a model of the same kind [3,4]. In our case this means
that there exists an LTS, which is called an implementation, adequately rep-
resenting the real behavior of the SUT. One does not know it exactly, but can
reason on its properties on the base of observations of the SUT’s behavior.

Many relations between LTSes can be chosen as conformance relations
checked in testing. [6] gives an extensive review of them. The choice of
conformance relation depends on the testing abilities — abilities to control
the SUT and to observe various aspects of its behavior during testing. On
the other hand, the testing abilities determine properties of the system under
test that can be checked. One of the most useful and natural conformance
relations used in testing is ¢oco, introduced in works of Jan Tretmans [8,7].
He also developed the theory that helps to construct test suites necessary and
sufficient to check conformance between model and implementation according
to toco.

1.1 ioco relation and its problems

toco uses three rather natural and basic testing abilities — ability to provide
inputs, ability to observe outputs, and less obvious ability to observe a qui-
escence, a situation, in which the SUT will not provide any more output.

2

Further observation of a quiescence in traces is denoted as d. In practice one
usually supposes that there exists some finite time 7" that in any state if no
inputs are provided and the SUT is going to provide an output, it always does
this in a time less that 7. This hypothesis allows us to detect quiescence as
the observation of no outputs during some timeout.

More attentive analysis of test abilities used by zoco gives two subtle issues.

e We suppose that the implementation is input-enabled, i.e. in each stable
state (where there are no internal transitions) it has a transition for each
input symbol. Informally, an input-enabled system should always accept
any input provided to it. This may be reasonable when we test large com-
ponents and systems as a whole, because it is natural to them to process
any possible inputs. But internal components are often developed in col-
laborative mode, not the protective one, and rely upon some restrictions on
the input.

* We suppose that during testing we can prevent SUT from giving us an
output, if we want it to accept our input first. This property follows from
the semantics of LTS interaction based on rendezvous mechanism. If we
model testing as interaction between an implementation LTS and a tester
LTS by means of parallel composition, we need to have in practice the
special ability to prevent the SUT from producing an output to the testing
system if the testing system is not ready to accept it.

Both issues were already mentioned by several authors, including Tretmans
himself [8]. These assumptions give tester very high level of control over
the SUT. The second property is considered by some authors as particularly
suspicious, since it is rarely can be met in practice. Only in special contexts,
for example, during debugging, tester has enough control over the execution
of the SUT to make this assumption valid.

However, in the framework of LTS models the lack of control over SUT
is the consequence of the presence of some testing context, which represents
the transport mechanism, delivering actions from the tester to the SUT and
backward. The testing performed through some context is called asynchronous
testing, while the one giving the tester full control over the SUT is called
synchronous. The second issue can be interpreted that zoco is intended to be
used in synchronous testing only. If we need to check conformance between an
implementation and a specification by means of testing through some context,
it is natural to use the composition of the LTS modeling the context with the
original specification as the specification of the observable SUT’s behavior and
check its real behavior against the derived specification [4].

Here we face with a known problem of Zoco — it is not preserved by the
parallel composition of LTSes, i.e. composition I||@Q) of an implementation [
conforming with a specification S and an LTS) modeling the context may be
not conforming with S||@Q). Examples of such implementation and specification
can found in [9]. Another example is shown on Fig. 1. The specification S

3

and the implementation I presented there are toco-conforming, but are not
toco-conforming if they are observed through input and output queues (that
is, being composed with two endless queues or even queues of length 2). This
problem seems to be a consequence of some bias of process calculi to consider
bisimulation relation as the most natural conformance relation between pro-
cesses. Parallel composition preserves bisimulation, which is thought to be
the desired relation between specification and its implementation. However,
bisimulation is not testable in natural settings. During black-box testing we
cannot check it completely and often actually do not want to do it, because
specification may describe more general behavior, only a part of which should
be realized in any implementation.

N I
N N

Y
?7a 7a
1x Y Ix
>
7b b 7b
Y !y A 4
A

Fig. 1. Example of zoco-conforming specification and implementation, which are
not zoco-conforming when observed through queues.

So, to propose more practical conformance relation for the testing in con-
text, we can go in two ways.

e To consider some practical variants of contexts and develop testing frame-
work for them, including specialized conformance relations. This approach
for context modeled by infinite or bounded input and output queues is pre-
sented in works of Petrenko and Yevtushenko [10,11]. Another paper taking
such an approach is [12] where the authors propose to augment events pro-
vided by the SUT with special stamps revealing the actual order of events in
the SUT for tester. Such instrumentation makes another conformance rela-
tion, zoconf, also used in synchronous testing, useful for the asynchronous
one.

e To define more convenient composition operation that preserves confor-
mance relation, in so far that we can check the SUT’s behavior through any
context against the specifications composed with LTS modeling this con-
text. This way is chosen in recent works of Tretmans with co-authors [9]. It
is shown there that input-enabled Zoco-conforming LT'Ses has no problems
with composition — if both the specification and the implementation are
completely specified and they are toco-conforming, then their compositions
with any context LTS are also zoco-conforming. So, the main problem to
be overcome on the way to more convenient composition is unspecified in-
puts. The demonic completion of specification is proposed in [9]. It forces
unspecified inputs to take the specification into special chaotic state, where

4

any behavior is possible. This is done to make any possible SUT’s behavior
in the unspecified area conforming to the completed specification.

1.2 The proposed approach

We also would like to go in the second way, since it makes possible testing
through different contexts, which is useful in practice. For example, contexts
not preserving the sequence of actions (as queues do) can be met in practical
testing of Internet protocols, components of GRID networks, and Web services.
Instrumentation of the SUT is not always possible, especially if it is distributed
itself. On this way it is reasonable first to examine more thoroughly the
meaning of unspecified inputs, which are the main source of the problems
with definition of ‘good’ composition operation.

One can notice that this issue is related with the implementation input-
enabledness hypothesis. Original definition of Zoco is asymmetric in two ways
— first, it assumes that an implementation should always accept inputs pro-
vided to it, while the tester can abstain from acceptance of an implementa-
tion’s output, second, a specification can be partial and not input-enabled in
contrast with an implementation. Both sources of asymmetry can be removed
if we allow an implementation also to be partially defined, not input-enabled.

One can find the following ways of unspecified input understanding. Some
of them were already mentioned in the literature [13].

e Forbidden input. Such an input is forbidden to be provided to the SUT, due
to various reasons. It may cause serious destruction of the SUT, or move
it into a situation, which we want to avoid during testing, for example,
divergence, an infinite path through internal actions. In fact, when demonic
completion is introduced, it means the same thing — we don’t want to check
the behavior of the SUT after accepting this input, but such a completion
may cause us to perform these unwanted checks.

We prefer to mark ‘bad’ situation we need to avoid with special forbidden
action label v. Any input that can lead in the state where a forbidden action
can occur (maybe after a path through internal transitions) is considered
as forbidden. The same holds for outputs that can lead us to the state with
a forbidden action. But outputs in some state are under full control of the
SUT — it is the SUT, which choose an output to produce. So, we need to
ban the mere waiting for an output in states where some output can lead
us to a forbidden action.

e Refused input. This input can be provided to the SUT and in response
it demonstrates refusal to accept it. Here we need the new testing ability
to observe input refusals. Refused inputs can model situations of practical
significance. For example, tea-coffee machine having two buttons for re-
questing tea and coffee and a slot for coin insertion may also have a special
shutter closing the slot until some button is pressed. When trying to insert
a coin before pressing a button we may observe that the coin is not taken.

bt

More practical example is given by Graphical User Interface controls — menu
item and buttons, which can be enabled or disabled. In this case control’s
disability means that the system refuses to accept actions on this control.
Refused inputs are considered as particular case of refusals forming refusal
sets in [5,6] and some papers on conformance testing, e.g. [14] and works
on Multi Input-Output Transition Systems (MIOTS) [15,16,17]. In testing
based on MIOTS testing concerning input refusals attract more attention,
since blocking of one channel caused by a refused input can be resolved after
accepting an input on another channel. Here we do not need in detailed
consideration of refusal sets and pay more attention to refused inputs.

e Erroneous input. This is more subtle case. In some situations we can pro-
vide an input to the SUT, but the fact that the SUT has accepted it says
that it is not conforming to the specification. Consider the example pre-
sented on Fig. 2. In the specification LTS presented there d-trace 67ad ends
in the state where input a is not specified. And its subtraces 67a and ?ad
end in states where input a is defined, but is followed by different outputs.
So, what if we observe the trace §7ad in the implementation and then pro-
vide an input a? The conforming implementation should be input-enabled
and it should accept a, by it cannot provide neither x, nor y, nor it can
demonstrate quiescence in response. Otherwise, if it has the trace d7ad?ad,
it should have 67a?ad, which is absent in the current specification, if it has
the trace 67ad?alx, it should have 7ad?alz, which is also absent, and if it
has the trace §7ad?aly, it should have §7a”aly, which is absent in specifica-
tion again. So, the only reasonable conclusion is that this implementation
is not conforming to the specification presented, just after it demonstrated
the trace 07ad?a. The last input a is erroneous in the sense that any pos-
sible behavior after it (any output or refusal) cannot be observed in the
conforming implementation.

We model such an input as leading to a separate state with the single
outgoing transition marked with special an error output. This construc-
tion will be necessary in consideration of possible completion operations for
LTSes.

Fig. 2. Example of the specification having the trace §7ad that should not exist in
any toco-conforming implementation.

e Unspecified input can be considered as doing nothing and so corresponding
to a self-loop transition (so called ‘angelic’ behavior). We think, however,

6

that such inputs should be specified in an accurate specification and it
should be tested that they actually do nothing. To make an input unspeci-
fied there must be more serious reasons (see above).

Bearing in mind all the listed possibilities, we do the following.

(i) Define an extension of toco relation for LTSes that can have forbidden
actions and refused inputs. Error output is an auxiliary mark to check
conformance. This relation is designated as tocog.s in this paper.

(ii) Since parallel composition of LTSes breaks 2oco only on partially specified
LTSes, we need to define some completion of the original LTS before com-
position. This completion from one hand should give an input-enabled
LTS, and from the other hand the original LTS and the completed one
should have the same set of toco-conforming implementations.

Next sections of the article present the implementation of those steps.
It seems that the main contribution of this paper is direct introduction of
forbidden actions into the definition of conformance relation and construction
of the corresponding completion operation disallowing processing of inputs
unspecified in the original LTS.

2 Extended zoco Conformance Relation

Below we recall some part of LTS-based formalism and usual arrow notation.

Definition 2.1 An LTS is a tuple L = (Q,C, T, qo) where

e () is non-empty set of states;

e C=10UU s a set of symbols, I consists of input symbols, U is disjoint
from I and consists of output symbols;

e T C Qx (CU{r,~v}) xQ is a set of transitions. A transition (q,a,q’)
starts in the state q, ends in the state ¢', and is marked with the label a. We
use labels with question mark (?a) to denote input symbols and labels with
exclamation mark (lx) to denote output symbols. T ¢ TUU 1is considered as
empty symbol marking internal transitions. v ¢ [U U,y # T is considered
as forbidden action symbol.

* go € (Q is the initial state.
We denote the fact that in an LTS L (¢,7,¢') € Ty as ¢ = ¢'. ¢ = denotes
3¢ € Qq¢ > ¢. q /— denotes ¥V¢' € Q (q,7,¢) & Tr. By a stable state we

T vy
mean a state ¢ such that ¢ /— Aq /— .
LTS can be partially specified, i.e. it can have states where not all inputs
are possible. However, we can consider it as completely specified due to the

?a
following interpretation. If for a stable state ¢ ¢ /—, we may mean that this
7a can be given in ¢ and the LTS should demonstrate refusal to accept it
in response to this. For an input symbol 7a we denote refusal of this input

7

as {?a}. In addition to input symbols, output symbols, empty symbol, and
forbidden action we use symbol § to denote quiescence, i.e. situation where
LTS does not have any transitions marked with output symbols, ~, or 7. Input
refusals and quiescence together are called refusals.

We call an LTS L strongly convergent if it does not have infinite paths
through internal transitions. It is possible to convert any LTS into strongly
convergent one by replacing the symbol 7 on the transitions of every such path
with v. From testing viewpoint this means that we avoid actions that can lead
us to such a path. Further we consider only strongly convergent LTSes.

We can transform an original LTS by converting convergence into forbidden
actions, making all transitions marked with v to lead into a special additional
state, and adding refusal transitions as self-loops in stable states. An example
of such a transformation is shown on Fig. 3.

Fig. 3. Example of transformation making refusals explicit and adding a special
state to go after forbidden actions.

By (~vd-traces in alphabet I U U we mean sequences consisting of input
and output symbols, v and refusal symbols — § and refusals of input symbols.
We denote concatenation of traces o and p by ou. 4 = o denotes that p is
a beginning of o. If s is input, output, input refusal symbol, v or 4, then (s)
means the sequence with the single element s.

A run of LTS L starting in a state q is a sequence of transitions of L,
transformed according to the procedure described above, the first of which
starts in ¢, and each next transition starts in the end state of the previous. A
Byd-trace of a run p is a sequence of labels of transitions of p, from which all
symbols 7 are skipped.

One can see that each time when p goes through a stable state without
outgoing output transitions, 6 may be inserted in the corresponding place sev-
eral times. Similarly, each time when p goes through a stable state without
outgoing transition marked with input symbol ?a, the symbol {?a} may be
inserted in the corresponding place several times. According to the transfor-
mation rules the first v met in Gvyd-trace is always the last symbol — there is no
need to extend a Bvyd-trace after the first forbidden action in it. The set of all
the fvyo-traces of runs of L starting in a state g is denoted as Tracesg,s(q, L).
Tracesg,s(L) is Tracesgys(qo, L).

If 0 is a Byod-trace of LTS L then L after o is a set of all states of L that
can be reached by paths having ¢ as their gyd-trace.

8

We need the notion of safe actions, which makes us safe from triggering a
forbidden action. An input symbol 7z or its refusal are called safe in LTS L

o
after a Byd-trace o if Vq € (L after o(?x)) ¢ /— . An output symbol or ¢ is

said to be safe in L after its trace o if Vlx € UVq € (L after o(!z)) ¢ 7L> A
Byd-trace o of L is safe if each its symbol is safe in L after the beginning of o
preceding this symbol. A set of all safe Gyd-traces of L is denoted as Safe(L).
We also call an extension of a safe trace o of L with a safe symbol in L after
o a test trace of L. A set of all test Gyd-traces of L is denoted as TT'(L). It is
easy to note that TT(L) N Tracesg,s(L) = Safe(L).

Consider again specification LTS S and implementation LTS I. We may
perform testing according to S only if we are sure that I operates properly
during this process. In zoco theory this is guaranteed by the input-enabledness
of I. Although we ease this assumption, we still need some safety hypothesis
about I. This leads us to the following definition.

Definition 2.2 If I and S are LTSes, I is said to be safe for S if TT(S) N
Tracesgys(I) C Safe([).

This definition says that if we construct a test avoiding possibility of forbid-
den action occurrence in a specification, its application to any implementation
safe for this specification cannot lead to forbidden action too. So, implemen-
tations safe for a specification can be safely tested according to it.

Now we are ready to give the definition of 2ocos,; relation.

Definition 2.3 Let I and S are LTSes. Then Iiocog,s S if and only if I is
safe for S and for each Bvyo-trace o € Safe(S) and for each symbol s (includ-
ing refusals) safe in S after o o(s) € Tracesg,s(1) = o(s) € Tracesg,s(S).

More fine (but less intuitive) expression of this fact can be given by the
expression TT(S) N Tracesg,s(I) C Tracesg,s(S) N TT(I). Informally, an
implementation [safe for S is said to be 20cos,s-conforming to S when after an
S-safe trace I can accept an input symbol, give an output symbol, demonstrate
a quiescence, or input refusal only if S can do just the same thing after the
same trace.

It is easy to show that Zocogs,; defines a preorder on LTSes. Note, that
classic toco is not a ‘good’ preorder, since it imposes asymmetric restrictions
on implementation and specification. While the latter can be incompletely
specified, the former should not. The fact that for specifications without for-
bidden actions and input refusals (usual completely specified LTSes) t0cog.s is
equivalent to zoco is also rather obvious. In this case they both are equivalent
to trace inclusion.

2.1 Test Derivation

During testing we should check SUT’s behavior on every trace that is safe in
the specification. Moreover, we should check it for all the symbols safe after

9

such a trace in the specification. As usual we model test cases by LTSes with
inverted inputs and outputs — inputs of the specification become outputs of a
test case, outputs of the specification (and implementation) are inputs of a test
case. In addition, the symbol 6 is used to mark deadlock resolution transitions
in a test case. 6 is considered as input symbol and means observation of
quiescence in the test case states where any SUT’s outputs can be accepted or
observation of an input refusal in the test case states where a specification’s
input symbol is provided by the test.

A test case has two special states fail and pass without outgoing transi-
tions. Other constraints on test case LTS are given below.

¢ Fach maximal trace of a test case should be finite and should end either in
the fail state or in the pass state.

e A test case should resolve all possible deadlocks in its interaction with an
implementation. If in some state ¢ of a test case there exists a € I ¢ !i>,
then ¢ i>, which fires if the input «a is refused by the SUT. If in some state

q of a test case for all x € U ¢ E—g then ¢ L, which fires if no output is
observed.

e A test case should be deterministic as much as it is possible. Each its
state should be an input state or an output state. An input state should
have outgoing transitions marked with all possible SUT’s outputs and 6. An
output state should have only one outgoing transition marked with some
input of the specification and one outgoing transition marked with 6.

An implementation LTS I passes a test case T if their parallel composition
(extended by correlating 6 in the test case with § and input refusals in the
implementation) has no states with fail component achievable from the initial
state. A test suite for a specification S is a set of test cases for S. An
implementation passes a test suite if it passes each its test case. A test suite
is called sound for a specification S if any 20cos.s-conforming implementation
passes it, and ezhaustive for S if any implementation passing it is t0cogys-
conforming to S. Sound and exhaustive test suite is called complete.

Theorem 2.4 Let us denote a set of safe finite Byd-traces of a specification
S as Safes(S). For each trace o € Safes(S) construct a test case T'(o) with
the help of the following transformations.

e Take a sequence of symbols of o, construct an inverted symbol for each
(Pa —la, lx —?x, 6 — 0, {?a} — 6), and make the sequence of transitions
marked with the resulting symbols. Let us denote a state of this LTS by [,
where 1 1s the corresponding prefix of 0. @ should be pass.

e For each prefix of o and symbol s such that j1(s) < o we add new transi-
tions. There are several possibilities listed below. For each case we consider
possible extensions of p with alternatives to s. If s is an input, its alternative
is the corresponding input refusal, and the alternative to an input refusal is

10

the corresponding input. Alternatives to an output are all other output sym-
bols from the alphabet and quiescence, and alternatives to § are all output
symbols. For each alternative to s we should add an additional transition to
our test case. If this alternative is possible into the specification (the trace
i can have several different extensions in the specification), we add the cor-
responding transition leading to pass, otherwise it should lead to fail. More
precise rules are given in the following list.

. ?s € I. Then, add a transition [i - pass, if p({{?s}) € Tracesg,s(S) and
I Y, fail otherwise.
- s is {?r}, where ?r € I. Then, add a transition [r, pass, if u(?r) €

Tracesg,s(S) and fi Z, fail otherwise.
- s € U Then any v € U, Ir #!ls and ¢ are safe in S after p. Add a

transition i - pass, if p(lry € Tracesg,s(S) and i 7, fail otherwise.

Also add a transition i - pass, if p(6) € Tracesg,s(S) and [2, tail
otherwise. ,
- 55 8. Then any 'r € U is safe after p in S. Add a transition i — pass,

if p(lr) € Tracesg,s(S) and fi % fail otherwise.
Then T'(Safes(S)) is a complete test suite for S.

Soundness of test cases from T'(Safes(S)) is implied by their construction
— if the composition of such a test and an implementation comes to a state
with fail component, then the implementation has a trace that does not exist
in the specification. To prove the exhaustiveness of the constructed test suite
one should take an implementation that does not conform to the specification,
found a safe trace o in the specification that can be extended in the imple-
mentation by a safe symbol s, for which o(s) ¢ Tracess,s(S) holds. Then,
it is sufficient to consider the test case constructed for o extended with an
alternative to s, which is a safe trace in S. The implementation chosen cannot
pass this test case. More details of the proof can be found in [18].

3 Completion Operations

The next step is to define such a completion operation C'omp for LTSes, that
for each LTS S Comp(S) is input-enabled and has the same set of i0cos,s-
conforming implementations. Results presented further are partial. Only a
solution for classic zoco relation is given. The authors are working now on
the full completion operation, but have no compact and proved construction
for it.

In [9] the demonic completion = is defined as a candidate of the needed
completion for zoco. However, as it is also noted there, this completion does
not preserve full information on unspecified inputs. Moreover, demonic com-
pletion from [9] is state completion — it defines some additional behavior after
an input in some state — and just this fact makes it slightly inadequate. State

11

completions can make non-conforming implementation conforming, as it is
mentioned in [12]. Fig. 4 shows an example of specification S and implemen-
tation I such that [ioco S does not hold, but IiocoZ(S).

S I Z(S)
Ix Ix 9
‘a
a Nla s
7a 7a “a ¥ I-;b
I 'y ‘?a T s \\:)
~"7a Ix!
‘y) 'y X,y
/a

Fig. 4. Example of the specification, for which = changes the zoco relation. The
‘correct’ completion variants A and I' are also presented.

The same Fig. 4 also presents the examples of A and I' completions defined
below. They both are more suitable completion operations, not extending the
set of toco-conforming implementations. On this figure additional transitions
added by completion operations are shown as hatch lines.

We propose two completion operations, A and I', that differs in interpre-
tation of unspecified inputs in the original LTS. A-completion treats them as
leading into the states where any possible behavior can be observed, but they
can be given to the completed LTS. I'-completion treats them as forbidden
inputs, which should not be provided during testing at all.

The main ideas are the following. At first we construct a basic completion,
which augments an LTS with additional transitions and states that do not
change the set of traces and protects the LTS from extending the set of zoco-
conforming implementations by the further state completion. On Fig. 4 tran-
sitions added by basic completion are shown as small-hatch lines. Then, we
perform state completion according to the operation used — for A-completion
we add all possible behaviors after all inputs that remained unspecified after
the first step, for I'-completion we add v transitions after those inputs. On
Fig. 4 transitions added by A- or Gamma-completions are shown as long-hatch
lines.

Definition 3.1 Basic completion operation Bc transforms an LTS with states
Q, inputs I and outputs U in the following way. The resulting LTS Be(L)
has the states corresponding to C§ — all possible sequences of symbols from
TUUU{d}. Inputs of Be(L) coincide with L, and outputs are U U {lerror}.
For each o € Cy R(o) denotes the set of -traces of L obtained from o by

12

deletion some or all 6 symbols. The set of transitions is the minimal set
derived from the following rules.

e V?a € I3u € R(o) u(?a) € Tracess(L) = o 9, o(?a) in Be(L).

e Viz e UVp € R(o) u(lx) € Tracess(L) = o =, o(lz) in Be(L).

e Vi € R(o) u(6) € Tracess(L) A o does not end on 6 = o — o(d) in
Be(L).

e Vu € R(o)Vlx € U p(lx) & Tracess(L) A p{d) & Tracess(L) = o Lerror,
o(lerror) in Be(L).

A-completion of an LTS L is constructed as completion of Bc(L) with
two states qu and q; demonstrating all possible behaviors, i.e. qu — qr and
Viz € U qu =, qu and ¥?a € I qp e, qu. For each state q of Be(L) and each

?a
ta €l if g /— in Be(L) then q ‘e, qu in A(L).
[-completion of an LTS L is constructed as completion of Be(L) with one
?a
state g, having y-self-loop. For each state q of Be(L) and each ?a € I if ¢ /—
in Be(L) then q e, ¢, i I'(L).

Theorem 3.2 A and I turn any LTS S into input-enabled one and preserve
the set of ioco-conforming implementations, i.e.

VI T'ioco S < Tioco A(S) < TiocoT'(S).

We need to skip the proof (see its details in [18]) due to restrictions on the
size of the paper.

The two completions defined can be used to describe relation between
classic toco and iocogs,; introduced above. To formulate this relation we first
note that zoco conformance to a specification S can be naturally extended on
the set 1,(S) of LTSes that may have refused inputs and forbidden actions,
but satisfy the following conditions.

* Empty trace is safe in any I € 1,(5).

e Let us call fvyd-trace without input refusals and v d-traces and denote the
set of all o-traces of an LTS L as Tracess(L). For each o, which is d-trace
of both S and I € I,(5), any output should be safe in I € L,(S) after o.

* For each o, which is d-trace of both S and I € I,(S), and each input ?a,
which can extend o in the specification (that is, o(?a) € Tracess(S)), ?a
should be safe in I € I,(S) after o and o(?a) should also be a é-trace of I.

For I € 1,(S) we can say that [ioco S if and only if for each o € Tracess(S)
and for each s € UU {6} o(s) € Tracess(I) = o(s) € Tracess(S).

Theorem 3.3 ¢ For each specification S without forbidden actions and com-
pletely defined implementation I without forbidden actions (the domain of

13

the classic ioco)
Iioco S < Iiocog,s A(S) < Iiocog,s I'(S).
» For each specification S without forbidden actions and I € I1,(S)
T'ioco S < Iiocog,s I'(S).

The proof of this statement can also be found in [18]. Note, that in the
second case I'(S) cannot be substituted by A(S), since implementations from

I,(S) nonconforming to S may conform to A(S).

4 Conclusion

The main results of this paper are definition of a conformance relation <ocogs,s
introducing semantics of forbidden actions and refused inputs into confor-
mance testing theory based on LTS models and construction of two comple-
tion operation that transform any LTS into the input-enabled ones having
the same sets of zoco-conforming implementations. The second result makes
possible definition of ‘proper’ LTS composition preserving zoco-conformance.

Nevertheless, the problems stated in the end of Introduction are not solved
completely. We have no compact construction of the analogous completion
preserving the set of 2ocog,s-conforming implementations for an LTS with
refused inputs. This construction is under development now.

Acknowledgements. We thank A. Petrenko from CRIM for helpful dis-
cussions.

References

[1] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[2] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[3] G. Bernot. Testing against Formal Specifications: A Theoretical View. In Proc.
of TAPSOFT’91, Vol. 2. S. Abramsky and T. S. E. Maibaum, eds. LNCS 494,
pp- 99-119, Springer-Verlag, 1991.

[4] ISO/IEC JTC1/SC21 WGT7, ITU-T SG 10/Q.8. Information Retreival,
Transfer, and Management for OSI. Framework: Formal Methods in
Conformance Testing. Committee Draft CD 13245-1, ITU-T Proposed
Recommendation 7.500. ISO-ITU-T, Geneve, 1996. See also ITU-T.
Recommendation Z.500. Framework on formal methods in conformance testing.
International Telecommunications Union, Geneve, Switzerland, 1997.

[5] I. C. C. Phillips. Refusal Testing. Theoretical Computer Science 50, pp. 241
984, 1987.

14

6] R. J. van Glaabek. The Linear Time-Branching Time Spectrum II; the
Semantics of Sequential Processes with Silent Moves. Proc. of CONCUR’93,
Hildesheim, Germany, August 1993. E. Best, ed. LNCS 715, pp. 6681, Springer-
Verlag, 1993.

[7] J. Tretmans. Test Generation with Inputs, Outputs, and Repetitive Quiescence.
Software — Concepts and Tools, 17(3):103-120, 1996.

[8] J. Tretmans. A Formal Approach to Conformance Testing. PhD thesis,
University of Twente, Enschede, The Netherlands, 1992.

[9] M. van der Bijl, A. Rensink, J. Tretmans. Component Based Testing with ioco.
CTIT Technical Report TR-CTIT-03-34, University of Twente, 2003.

[10] A. Petrenko, N. Yevtushenko, J. L. Huo. Testing Transition Systems with Input
and Output Testers. Proc. of TestCom 2003, LNCS 2644, pp. 129-145, Springer-
Verlag, 2003.

[11] J. L. Huo, A. Petrenko. On Testing Partially Specified IOTS through Lossless
Queues. Proc. of TestCom 2004, LNCS 2978, pp. 76-94, Springer 2004.

[12] C. Jard , T. Jéron , L. Tanguy , C. Viho. Remote testing can be as powerful as
local testing. In Proc. of the IFIP TC6 WG6.1 Joint International Conference
on Formal Description Techniques for Distributed Systems and Communication
Protocols (FORTE XII) and Protocol Specification, Testing and Verification
(PSTV XIX), October 1999, p.25-40.

[13] G. V. Bochmann, A. Petrenko. Protocol Testing: Review of Methods and
Relevance for Software Testing. Proc. of ACM SIGSOFT ISSTA’1994, Software
Engineering Notes, Special Issue, pp. 109-124.

[14] J. Helovuo, S. Leppanen. FEzxploration Testing. Proc of. 2-nd International
Conference on Application of Concurrency to System Design, Newcastle upon
Tyne, U.K., June 2001, pp. 201-210.

[15] L. Heerink. Ins and Outs in Refusal Testing. PhD thesis, IPA-CTIT, 1998.

[16] L. Heerink, J. Tretmans. Refusal Testing for Classes of Transition Systems
with inputs and Outputs. In T. Mizuno, N. Shiratori, T. Higashino, A. Togashi,
eds. Formal Description Techniques and Protocol Specification, Testing and
Verification. Chapman & Hill, 1997.

[17] Z. 1i, J. Wu, and X. Yin. Refusal Testing for MIOTS with Nonlockable Output
Channels. In International Conference on Computer Networks and Mobile
Computing, Beijing, China, October 2003, pp. 517-522.

[18] I. B. Bourdonov, A. S. Kossatchev, V. V. Kuliamin. Theory of conformance
testing for systems with refused inputs and forbidden actions. Synchronous
case. ISP RAS Technical Report 2005, in Russian. http://www.ispras.ru/
~RedVerst/RedVerst /Publications/TR-01-2005.pdf

15

