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Abstract. The paper proposes a method for Word Sense Disambiguation based on an ex-
panded Hidden Markov Model. The method is based on our observation that natural language
text typically traces multiple interleaved chains consisting of semantically related terms. The
observation confirms that the classical HMM is too restricted for the WSD task. We thus pro-
pose the expansion of HMM to support multiple interleaved chains. The paper presents an
algorithm for computing the most probable sequence of meanings for terms in text and pro-
poses a technique for estimating parameters of the model with the aid of structure and content
of Wikipedia. Experiments indicate that the presented method produces systematically better
WSD results than the existing state-of-the-art knowledge-based WSD methods.

1 Introduction

A variety of text analysis tasks essentially rely on word sense disambiguation (WSD) for retrieving
semantics from text. Recently, Wikipedia has become an important external knowledge base for
performing text analysis tasks, and WSD based on information derived from Wikipedia is currently
the area of active research (Grineva et al., 2009; Medelyan et al., 2008; Milne and Witten, 2008;
Turdakov and Velikhov, 2008).

The structure of Wikipedia differs (Zlatic et al., 2006) from the structure of the thesaurus
WordNet that is traditionally used for WSD. Wikipedia consists of more than 2.5 million articles;
each article describes some real world concept. Each Wikipedia article has a title that serves as
the main representation for the concept. The body of an article in particular contains links to other
conceptually related articles. Formally, each link has two parts: (i) an article in the encyclopedia
the link points to and (ii) a caption that is displayed to readers of Wikipedia. Besides regular
articles, Wikipedia contains several types of special pages. Redirect pages provide synonyms of
the main representation. Another type of special pages important for this work is a disambiguation
page, containing a list of articles with a similar ambiguous representation.

Some knowledge-based WSD algorithms (Medelyan et al., 2008; Turdakov and Velikhov,
2008; Milne and Witten, 2008) rely on an assumption that text contains enough unambiguous
terms, and these are used as the basis for disambiguation. However, the number of ambiguous rep-
resentations increases as Wikipedia grows, and additional meanings appear for most commonly
used terms. This tendency brings to texts that have a relatively small number of unambiguous
terms that weakly correlate with the main subject of text. As a consequence, precision of WSD
algorithms based on unambiguous content tends to decrease as Wikipedia continues to evolve.

From this perspective, a WSD algorithm has to be durable to the proportion of ambiguous
terms in text. Several research papers thus represent WSD as the maximization problem using the
Hidden Markov Model formalism (Loupy et al., 1998; Molina et al., 2004). Denoting the set of
terms in text by T and the set of meanings by M , the input for a WSD algorithm is the sequence
of terms τ = t1, . . . , tn found in text; ti ∈ T . The maximization problem is finding the most
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probable sequence of meanings µ = m1, . . . ,mn, where mi ∈M , in accordance with the model,
i.e. µ̂ = arg maxµ P (µ | τ) = arg maxµ

(
P (µ)P (τ |µ)

P (τ)

)
. Since the probability P (τ) is constant in

the maximization process, the problem is reduced to maximizing the numerator of the equation.
For making this equation solvable, the problem is simplified using Markov assumptions. Thus the
problem is reduced to solving the equation µ̂ = arg maxµ (

∏n
i=1 P (mi | mi−h:i−1) · P (ti | mi)) ,

where h is the order of the model. The parameters of the last equation define the HMM of order
h, where P (mi | mi−h:i−1) represents transition probabilities between states, and P (ti | mi) rep-
resents the probability of emitting a term ti in state mi, i.e. the probability of emitting a particular
term representing the meaning.

Although the WSD task can be easily represented as a maximization problem using the HMM
formalism this way, applying HMM to WSD is closely related to the natural language sparseness
problem. That is, learning a transition model for WSD requires tremendous amount of training
examples—at least several for each pair of concepts. Additionally, the classical Markov assump-
tion itself seems to be not quite suitable for the WSD task; Section 3 gives more detailed consid-
erations on this issue.

To solve the problems outlined above, we propose a model that combines lexical chaining and
WSD algorithms and show a possible way to estimating parameters of the presented model.

In summary, the main contributions of this paper are the following:

• We observe that information in natural language text constitutes multiple interleaved chains,
and propose an expanded HMM to formalize this observation.

• Based on the proposed model, we present a WSD algorithm and describe a method for esti-
mating parameters of the model using statistical and link information from Wikipedia.

Experiments show that the proposed WSD algorithm produces systematically better results than
the state-of-the-art knowledge-based WSD algorithms, thus verifying that the proposed model is
appropriate for locating concepts implied in natural language texts.

The rest of the paper is organized as follows. Related work is discussed in Section 2. The pro-
posed approach to word sense disambiguation is motivated by examples in Section 3. The model
and the algorithm for the proposed approach are formally described in Sections 4 and 5. Estima-
tion of parameters in order to apply model to WSD is given in Section 6. Results of experimental
evaluation are presented in Section 7. We outline future work and conclude in Section 8.

2 Related work

A good survey of WSD algorithms in general is presented in (Agirre and Edmonds, 2007). Due to
space limits, here we give a detailed emphasis to recent algorithms that use Wikipedia, HMM or
lexical chaining for disambiguation.

Wikipedia has become a popular resource for both knowledge-based and supervised corpus-
based WSD methods. Mihalcea and Csomai (2007) use a combination of the Lesk algorithm
and Naı̈ve Bayes classifier to produce good disambiguation results. Medelyan et al. (2008) and
Turdakov and Velikhov (2008) use a combination of semantic relatedness and prior probability of
Wikipedia concepts. The best result of Wikipedia-based WSD claimed in literature is presented
by Milne and Witten (2008): precision of 98.4% in one of the experiments. Milne and Witten
use Wikipedia links to create a training corpus for several machine learning algorithms. However,
evaluation is performed over Wikipedia articles themselves as well as training, thus making the
evaluation results potentially biased.

Known models for WSD based on HMM use SemCor for training and testing. Loupy et al.
(1998) show that SemCor is too small for training even the first-order HMM. Loupy et. al. solve
the sparseness problem by using WordNet categories to interpolate missing occurrences of mean-
ings. This addition allows increasing precision of their WSD algorithm in comparison to the most



common sense. Molina et al. (2002),(2004) obtain similar results by using a specialized HMM
with states containing additional information about parts of speech of corresponding words.

Mihalcea and Moldovan (2001) propose a WSD algorithm that relies on minimal chaining: it
combines a pair of words that have WordNet distance 0 or 1 between some of their senses, and
selects these senses. Mihalcea and Moldovan noted that better precision is achieved if both words
in a chain are located in text nearby; for an ad-hoc implementation of such a strategy Mihalcea
and Moldovan split input documents in their experiment into fragments with at most 15 lines each
(Mihalcea and Moldovan, 2001). Our approach provides generalization and formalization of these
principles, since in our approach each chain could contain more than two members, and locality
within text is modeled through the order of the HMM.

Nelken and Shieber (2007) perform WSD by grouping senses into lexical chains using relations
obtained from WordNet. Each chain in their approach is detected independently one by one using
a Hidden Markov Model. Although their algorithm is claimed as a generalization of the previously
existing ones that rely on lexical chaining, their evaluation reveals the algorithm performing worse
than the baseline that simply selects the most common sense for each ambiguous term. Instead of
interpreting their evaluation results as a signal for unmotivated assumptions, Nelken and Shieber
instead claim this to be a “basic conflict between chaining and WSD”.

Nelken and Shieber (2007) discover that due to sparseness of the two WordNet-based relations
they are using, lexical chaining applied to WSD is unlikely to outperform the most common sense
baseline. From this analysis Nelken and Shieber conclude a too general statement: “not to use
chaining algorithms for WSD”. In this paper we show the incorrect generality of these statements,
and the most common sense baseline is considerably outperformed by the method we propose.

3 Motivating Examples
Recent research papers show that it is practically complicated to learn the transition model even for
a first-order HMM if applied to the WSD problem. But even supposing it is possible to compute
parameters for HMM of any order, is the classical HMM still an adequate model for representing a
sequence of meanings for terms encountered in natural language text? Let us have a look at some
practical examples.

Example 1. Imagine a news article about sports medicine: a novel way of treating professional
diseases with the aid of a drug never used for this purpose before. Potential terms encountered
by a WSD system within such text could be: football, The drug, sports medicine, etc. Since
the particular drug is reported to be used in the sports field for the first time, it is likely that the
name of this drug (called ‘The drug’ here for illustration) is not related to sports concepts in a
knowledge base used for training the system, i.e. P (The drug | football) = 0. In the case of
classical HMM, the system would need to rely on some heuristics or smoothing methods to find
the correct sequence of meanings. On the other hand, if a model supports several chains, then
two chains are formed, and the probability of this event is equal to the joint probability of two
independent meanings. Moreover, these chains could be merged into one when processing further
terms in input text, e.g. when encountering the term sports medicine that covers both topics.

Example 2. Let us have a look at the example we came across while investigating the applica-
bility of a classical HMM to WSD. This example presents a fragment of a real life news article
about professional footballers and their cars. In the sentence

Cristiano Ronaldo hit the headlines when he crashed his Ferrari

three terms from a Wikipedia dictionary are emphasized: Cristiano Ronaldo, headline and Fer-
rari. The term Ferrari is an ambiguous one and has at least two meanings: (a) Italian sports car
manufacturer and (b) Matteo Ferrari, an Italian football player. Given the strong football-related
context represented by Cristiano Ronaldo, most WSD algorithms including classical HMM-based
ones tend to choose the footballer rather than the car brand as the meaning for Ferrari, even though



the car brand is a more commonly used meaning. On the other hand, a model that supports multiple
chains would find it more probable to start a new chain consisting of the most common meaning
in this case, and the other car-related meanings are added to the chain if appropriate terms appear
in text of the news article further.

It can be observed from the above examples that natural language texts typically describe mul-
tiple topics or multiple aspects within a topic, and these are not properly reflected by a classical
HMM. Our goal is thus to design a model that would provide a natural way for representing mean-
ing of text as a set of interleaved Markov chains. With this goal in mind, we suggest expanding
the HMM formalism to the case of multiple interleaving chains. First, the expanded model is
described in general, and then the application of the model to the WSD task is discussed.

4 Expanding HMM
Like in the classical HMM, we discover stationary processes modeled as Markov chains of some
order m. The main distinction between the classical model and the one presented in this section
is that a current state is now allowed to either become a part of some existing chains or to start a
new chain.

In the following, we denote states by regular mathematical letters, the state of the system at
the k-th step denoted as Sk. Markov chains are denoted by calligraphic letters, e.g., L, N . We
use overlining to combine components that constitute a single chain, thus LSk denotes a chain
consisting of consequent states of L and the last state Sk. Additionally, notation Sk ∈ L means
that the state Sk belongs to the chain L. Finally, the hat notation ŜiSj is used to combine a pair of
states Si, Sj that belong to a common chain.

The proposed expanded model is formalized in two phases. First, we consider the case when
all previous states of the system constitute a single chain. Then, this particular case is extended to
the general case of multiple chains.

4.1 Previous states constitute a single chain
With all the previous states S1, S2, . . . , Sk−1 combined into a single chain L, this case is neverthe-
less different from the classical HMM in the way the current state is handled. Namely, two options
for the current state Sk are possible: (a) either Sk joins L as a new state, or (b) Sk does not belong
to L and forms a new chain N . Probabilities of these options are written correspondingly as:

P (LSk) = P (L) · P (Sk ∈ L) · P (Sk | L) , (1)

P (L,N ) = P (L) · P (Sk /∈ L) · P (Sk) . (2)

The right-hand side of each equation consists of exactly three multipliers; we will further refer to
these multipliers as the first, the second and the third ones respectively. Each of the equations (1)
and (2) expresses the total probability of each of the options; thus both equations include proba-
bility of the chain L as their first multipliers. The second multiplier specifies the probability of
whether the current state Sk belongs to the chain. If Sk joins the chain, then the third multiplier
in equation (1) expresses the probability of Sk appeared given the chain. If Sk forms a new chain,
then the third multiplier in equation (2) does not depend on the chain L.

Our goal is to locate the most probable sequence of states and their grouping into chains; this
implies computing the probabilities P (LSk) and P (L,N ). Further investigating equations (1)
and (2), our next step is to work out the formulae for computing each of the three multipliers.

The first multipliers in (1) and (2) are computed recursively over the length of a chain. For
discovering the second multipliers, we make an assumption similar to the Markov assumption:

Assumption 1 Probability of a current state Sk belonging to a chain L depends only on a fixed
finite number of previous states Sk−1, Sk−2, . . . , Sk−h in L.



We further refer to states Sk−1, . . . , Sk−h from Assumption 1 as active ones; we refer to a
chain that contains active states as an active chain. Note that the number of active chains is less
than or equal to the number of active states. In this paper we consider only finite history of active
states, so in addition to the order m of the classical Markov Model for linked chains, we introduce
the order of the expanded model, further denoted as h.

With Assumption 1, the second multipliers in equations (1) and (2) are expressed through a
relationship between Sk and the set of active states in L. To further simplify the computation
of the second multipliers, we express them through a pair-wise relationships between states, by
introducing one more assumption:

Assumption 2 For different states Si, Sj and Sk, the event “Si and Sk belong to a common
chain” is independent of the event “Sj and Sk belong to a common chain”. That is, for i 6= j,
i 6= k and j 6= k: P (ŜiSk and ŜjSk) = P (ŜiSk) · P (ŜjSk) .

Applying Assumptions 1 and 2 and denoting the set of active states in the chain L as Ω =
{Sk−1, . . . , Sk−h}, the second multipliers in equations (1) and (2) are computed as probabilities
of complimentary events: P (Sk /∈ L) =

∏
Si∈Ω[1− P (ŜiSk)] , P (Sk ∈ L) = 1−

∏
Si∈Ω[1−

P (ŜiSk)] . The third multipliers in equations (1) and (2) can be learnt from a tagged corpus as
their analogues from a classical Markov model. A particular way of defining transition probability
P (Sk | Sk−1, . . . , Sk−m) as well as probability P (ŜiSk) depends on a particular domain the
model is applied to. Section 6 illustrates a way of computing these probabilities for an application
of the proposed model to the WSD task based on Wikipedia.

4.2 Multiple chains

In the general case of multiple chains, let us denote the set of all chains as Λ = {L1, . . . ,Lq}. The
current state Sk can belong to zero or more chains in Λ. The current state Sk belonging to more
than one chain means that Sk merges these chains into one. Formally, for an arbitrary subset of
chains λ ⊂ Λ, λ = {Li1 ,Li2 , . . . ,Lir}, the probability of Sk belonging to exactly this subset is
written by combining equations (1) and (2):

P (λSk,Λ \ λ) = P (Λ) · P (Sk ∈ λ, Sk /∈ Λ \ λ) · P (Sk | λ) . (3)

Here, notation Sk ∈ λ stands for the event of Sk belonging to every chain in λ; notation Sk /∈ Λ\λ
stands for the event of Sk belonging to neither chain in Λ \ λ.

Like in case of a single chain, the first multiplier in (3) is computed recursively over k. The
second multiplier in (3) is computed using independence of individual chains:
P (Sk ∈ λ, Sk /∈ Λ \ λ) =

∏
Li∈λ P (Sk ∈ Li)×

∏
Lj∈(Λ/λ) P (Sk /∈ Lj) .

If λ consists of exactly one chain, the third multiplier in (3) is computed in the same way as
discussed in the previous subsection. Since the general case of λ containing multiple chains has the
effect of all these chains being merged together, probability of Sk given λ is defined as probability
of Sk given the merged chain: P (Sk | Li1 , . . . ,Lir) = P (Sk | L), L =

⋃r
j=1 Lij . For instance,

if order of Markov model for chains is m = 2, and state Sk belongs to both chains L and N
(Figure 1a), then P (Sk|LN ) = P (Sk|Sk−1Sk−2). If Sk belongs only to L, then P (Sk|LN ) =
P (Sk|L) = P (Sk|Sk−2Sk−4), and so on. Note that we do not need to recompute chains, we just
need to compute probability of a new state given the last m states that belong to chains in λ.

For the classical Markov Model, the most likely sequence of states given a sequence of ob-
servation can be found using the Viterbi algorithm. The Viterbi algorithm bases on a recursive
relationship between the most likely path to each state Sk+1 and the most likely path to each
previous state Sk. In the next section, we define the similar algorithm for the expanded model.



Figure 1: Possible connections between chains and states: (a) New state Sk belongs to chains L andN ; (b)
Connections between chains L and N and a new state S.

5 Algorithm for finding the most probable sequence of states
Algorithm 1 for detecting the most likely sequence of states for a given sequence of observations
is similar to its analogue for the classical Markov model except for the function computePath.
The function computePath accepts paths to previous states and a new state corresponding to the
current observation and computes the most probable path to this new state; the definition of the
function is provided below. Paths through previous states are stored in the associative container
prevPath (lines 2, 7, 9 of the Algorithm). The function combination(sji−h...i−1) called in line 5
of the Algorithm produces a set of all combinations of states corresponding to observations i −
h, . . . , i− 1. Note that in the case of equiprobable paths the algorithm prefers a path consisting of
the smallest number of chains.

Algorithm 1 Compute most likely explanation
Input: h, sequenceOfObservation
Output: mostProbableSequenceOfStates

1: for sj
1 ∈ {states corresponding to first observation} do

2: prevPath[sj
1]=sj

1

3: for i = 2 to n do
4: for sj

i ∈ {states corresponding to ith observation} do
5: for all u ∈ combination(sj

i−h...i−1) do
6: if i <= k then
7: prevPath[u ∪ sj

i ] = computePath(prevPath[u],sj
i )

8: else
9: prevPath[u/{si−h} ∪ sj

i ] = arg maxsi−h
(computePath(prevPath[u], sj

i )
10: return arg maxu={un−h...n} prevPath(u)

The function computePath is defined separately for two different cases. Namely, since the
probability of a new state Sk joining different chains potentially changes with respect to λ in both
the second and the third multipliers in (3), it is instructive to investigate the effect each of the
multipliers has individually. For achieving this goal, special consideration is given to a zero-order
HMM for chains (i.e. to the case of m = 0), since in this case P (Sk | λ) = P (Sk) and thus the
third multiplier in (3) is constant with respect to λ. We refer to this particular case of the expanded
model as a weak model and discuss it first. For the general case of m > 0, we refer to the model
as a full one and discuss it in the subsequent subsection.

5.1 Weak model
With the weak model having m = 0, the right-hand side of equation (3) differs only in its second
multiplier for different λ. Such uniformity of equation (3) for the weak model makes it possible
to save computational effort in locating the most probable sequence of states.

We present two propositions to reduce the search space for the most probable path; then the
function computePath is defined. For illustrative purposes, let us consider the case of Λ con-
sisting of only two chains: Λ = {L,N}. Figure 1b lists all possible connections between L



and N and the current state S. The first two cases in the figure represent the chain N being the
continuation of the chain L; the remaining cases in the figure represent N being a separate chain.

Let the chain N consist of states Si1 , . . . , Sip . The first proposition affirms that the current
state does not break previously established connections in the most probable path.

Proposition 1 If a chainN is a part of the most probable path, and the first state Si1 of the chain
N belongs to L with probability greater than 1

2 , then L is a part of the most probable path as well,
and N is the continuation of L.

In terms of Figure 1b, Proposition 1 states that (i) it follows from P (Case1) ≥ P (Case2) that
P (Case1) ≥ P (Casei), i = 1..6; and (ii) it symmetrically follows from P (Case2) ≥ P (Case1)
that P (Case2) ≥ P (Casei), i = 1..6. Due to space limits we omit proofs in this paper.

The second proposition establishes that the current state in the most probable path can affect
connections among existing chains, but only among active ones.

Proposition 2 If L andN are disjoint active chains (cases 3-6 in Figure 1b), there can exist state
S such that the most probable path to S containsL andN as a merged chain (case 1 in Figure 1b).

Generalization of both propositions to the case of multiple chains is made by induction. Propo-
sition 1 verifies that there is no need to consider once merged chains as disjoint ones. Proposition 2
shows that disjoint chains can still get merged, but merging can only take place while chains re-
main active. The combination of these propositions allows reducing the search space while finding
the most probable path. The respective definition of the function computePath is given in Algo-
rithm 2.

Algorithm 2 Function computePath for weak model
Input: previousPath, newState
Output: newPath

1: chainsSet = getChainsCombinations(previousPath)
2: for all joinedChain ∈ chainsSet do
3: Compute P (newState ∈ joinedChain)
4: return arg maxprocessed paths P (path)

The local variable chainsSet in Algorithm 2 is a set containing all possible combinations of ac-
tive chains. With n denoting the number of active chains, the number of items in the set chainSet
is calculated as |chainsSet| =

∑n
k=0 S(n, k) = Bn, where S(n, k) is a Stirling number and Bn

is a Bell number.

5.2 Full model

For the full model, the third multiplier in equation (3) essentially depends on connectivity of active
chains, and thus Propositions 1 and 2 do not hold for the full model. For instance, the probability
P (S | LN ) in Case 1 in Figure 1b can be either greater than or less than the probability P (S | L)
in Case 4.

For each path, the algorithm thus has to process all possible active chains that could potentially
be constructed. The definition for the function computePath is the same as the one given in
Algorithm 2, with the difference that chainsSet is now the set of all possible combinations of
active states into chains. The number of such combinations is given by the Bell number Bn as
well, but with n now standing for the number of active states in the path.

Comparative evaluation of weak and full models is presented in Section 7.



6 Application to WSD

For applying the proposed model to WSD, we construct a dictionary that contains representations
for all concepts from the English Wikipedia. Performing WSD over input text implies: (a) finding
all phrases in text that match representations from the constructed dictionary, and (b) selecting the
appropriate Wikipedia concept for each matched representation.

As a preparatory offline phase, we collect titles of all regular Wikipedia articles and of all
redirect pages. Additional associations between concepts and representations are retrieved from
Wikipedia disambiguation pages and from link captions.

To specialize the proposed model to WSD, we now estimate the three parameters of the model:
1) the probability P (m̂imj) of two states belonging to the same chain; 2) the transition model
P (mi | mi−h:i−1); and 3) the observation model P (ti | mi).

With respect to the Wikipedia dictionary used for WSD in this paper, we suggest to base
the estimates on semantic relatedness between Wikipedia concepts. Precisely, we chose the
neighborhood-based measure presented in (Turdakov and Velikhov, 2008).

1. For estimating the probability of two states belonging to the same chain, the following
heuristics is introduced:

Heuristics 1 Probability of two states belonging to the same chain is a function of semantic re-
latedness: P (m̂1m2) = φ(rel(m1,m2)) .

We learnt the function φ fully automatically from a collection of un-annotated documents.
Namely, due to certain correlation discovered in related work between lexical chaining and clus-
tering within a graph of disambiguated concepts (Medelyan, 2007), we utilized this observation for
learning φ. Each document in the collection was represented as a weighted graph, with vertices for
concepts and edges between vertices having weight equal to semantic relatedness between these
concepts. Note that we kept all alternative concepts for each term located in a document. Next, a
clustering algorithm (Clauset et al., 2004) was applied to each graph, and two concepts were con-
sidered to belong to the same lexical chain if and only if the corresponding vertices in the graph
fell into the same cluster. The set of positive examples for training thus consisted of concept pairs
from a common cluster; negative examples consisted of concept pairs that belonged to a common
document, but to different clusters. Obtaining the set of 137,324 positive and 859,076 negative
examples, the function φ was computed in the space of step functions with step 0.01.

2. The transition model is estimated using the following heuristics:

Heuristics 2 The probability of a meaning mi given the sequence of previous meanings mi−1,
mi−2, . . . , mi−h is proportional to a linear combination of (i) semantic relatedness between the
current and the previous meanings and (ii) the prior probability of the current meaning:
P (mi | mi−1) = α · (rel(mi | mi−h:i−1) + β · P (mi)).

Since the coefficient α does not affect the result of the maximization problem (recall Algo-
rithm 1), we can remove α from further consideration. Also, in case of the current meaning mi

not depending on previous meanings and being the first member of a new chain, the right-hand
side of the equation should reduce to prior probability for consistency, thus giving β = 1.

Using semantic relatedness to estimate parameters of the model helps to solve the sparseness
problem, because relatedness can be calculated for any pair of Wikipedia concepts.

3. The observation model and the prior probability of meanings are estimated from the
Wikipedia corpus statistically using concept names, names of redirects and link captions.

Applying the model to a sequence of representations located in input text yields the most prob-
able sequence of corresponding meanings, i.e. WSD for input text. Quality of results produced by
the suggested WSD algorithm is evaluated in the next section.



7 Evaluation

WSD algorithms based on Wikipedia traditionally use Wikipedia articles themselves and their link
information for evaluation. Namely, for each term appearing as a link caption and presented in
a dictionary, its corresponding meaning is the one pointed by the link. It can easily be observed
that evaluation on Wikipedia articles is potentially biased towards algorithms that use machine
learning to train on the Wikipedia corpus itself (Milne and Witten, 2008).

We used a collection of Wikipedia articles composed of 500 random regular articles in order to
compare our method with the existing WSD algorithms. In addition, we took the test set presented
in (Milne and Witten, 2008), annotated with the aid of the Mechanical Turk service. Finally, we
manually annotated a collection of 131 documents consisting of news articles from several online
sources and of several scientific papers. Statistics for these collections is presented in Table 1.
Note that the proportion of ambiguous terms in the manually annotated collection is higher than
in the collection of Wikipedia articles.

Table 1: Statistics for test collections

Wikipedia articles Milne and Witten (2008) News & scientific papers
#documents 500 50 131
#terms 50947 727 8236
#ambiguous terms 39332 479 6952
#meanings (avg) 35.34 29.94 22.34

We use the Wikipedia dump of March 2009 for the evaluation. Results are presented in Table 2.
We apply WSD algorithms to terms that have proper concepts in Wikipedia, so precision and recall
are equal. Also, we skip terms that have no proper concepts in Wikipedia while annotating the test
collection to exclude the influence of insufficient coverage of Wikipedia on the results.

Table 2: Precision (%) for different WSD algorithms for the test collections

Wikipedia articles Milne and Witten (2008) News & scient. papers
Turdakov and Velikhov (2008) 85.12 78.81 64.34

Most Common Sense 90.10 85.33 67.61
HMM-1 90.13 85.33 67.61
HMM-2 91.51 85.33 67.72

h = 2, m = 0 93.36 89.00 74.75
h = 2, m = 1 93.68 89.18 75.10
h = 2, m = 2 92.87 88.80 73.93
h = 3, m = 0 93.67 88.41 75.60
h = 3, m = 1 93.72 89.38 75.56
h = 3, m = 2 93.78 89.38 76.13

The results shown by our model are significantly better than the ones produced by the classical
HMM, even in case of the zero order HMM for chains. Evaluation also shows that the weak model
produces good results, just little bit worse than the full model demonstrates.

Precision of 76.4% reported by Milne and Witten (2008) on their testing corpus is lower than for
our algorithm; however, their figure also incorporates precision of link detection, thus preventing
direct comparison of the two approaches. Although the algorithm by Milne and Witten relies on
extensive machine learning, we believe that our algorithm provides quite comparable precision.



8 Conclusion and future work
This paper introduces HMM expansion to several interleaved chains and applies the proposed
model to word sense disambiguation. The accompanying result achieved by the proposed algo-
rithm is segmentation of disambiguated concepts from input text into lexical chains. The proposed
algorithm produces considerably better results than the classical HMM applied to WSD.

A possible way to improve results produced by the algorithm is to investigate more sophisti-
cated strategies for choosing active states. Assumption 1 made in the paper is weaker than the
Markov assumption, for our approach makes it possible to keep some of the states active for using
them in any part of input text. For example, it could be reasonable to experiment with keeping
concepts from the text title active. Such a modification would make topics introduced in the title
active for the whole text to construct chains that describe main topics.

Another way to improve WSD results is to discover the function φ that establishes the proba-
bility of two terms belong to one chain with respect to their semantic relatedness. This function
is the primary parameter of the algorithm that affects the length of a chain. In this paper, we sug-
gested one way for computing this function; however, some other way may fit WSD better, and
such analysis could be a good subject for future work.
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