
JSQ: Distributed querying of JSON stream data

c© Konstantin Abakumov

ISP RAS

abakumov@ispras.ru

Abstract

Nowadays, the necessity for online process-
ing of data is becoming more evident. The

most convenient way to perform analytical on-

line processing is declaring continuous queries
using special query languages. The goal of

this work is to propose the system for dis-

tributed continuous query processing on clus-
ters of commodity computers. We studied exist-

ing solutions and requirements for such systems

and proposed JSQ system desing.

1 Introduction

The common property of most popular, fast-growing and

advanced applications today — is a deep-personalized
interaction with every user, that requires gathering and

generating of big amounts of heterogeneous and often

very customized for every user information. Every year
thousands of new web- and mobile- services emerging

and many of them contain bright and original ideas, that
able to lift up our digital experience to the new levels.

The examples of such applications is social networks,

search engines, collaborative work tools, etc.
At the current moment, important step in evolution of

such applications — is to bring their reaction time closer

to the realtime, to minimize the delay before provided
results will take into account all new gathered informa-

tion. The simplest example — the delay between the ar-

bitrary web-page update and showing it’s new content in
search engine’s results. It can vary from few weeks to

several seconds depending on search engine’s indexing

resourses and web-page popularity. Another example is
detection of trending events in social networks. It can

be done once every day by analyzing stored activity, or
list of such events can be maintained in near-realtime.

Such near-realtime computations are often referred to as

online computations.
In the last decade, necessary data amounts and their

growth rates forced industry to develop new soultions for

efficient data management. As a result, the most popu-
lar and perspective approach today — is the distributed

scalable computing on clusters of commodity comput-

ers. The pioneers of the approach is such technologies
as MapReduce, GFS, BigTable and their open-source

analogs. But in the majority, these solutions targeted for

batch-oriented data processing and not well suited for on-
line computations. Only several years ago there began

Proceedings of the Ninth Spring Researcher’s Colloquium

on Database and Information Systems, Kazan, Russia, 2013

to emerge solutions, oriented for distributed online com-

putations. The pioneers and most popular of those sys-
tems today — frameworks S4 [4] and Storm [5]. They

provide simple programming models, allowing easy de-

velopement of a scalable online computation programs.
Only after the year of public release, Storm got a big pop-

ularity and many companies started using it to make their
applications more interactive.

In this work we will focus more on analytical tasks,
and application of online computations for their solution.

Such tasks often have one of the following forms:

• Filtering out interesting events and count aggregate

values over them in realtime, getting their growth

dynamics

• Determining current trends, appearing in system

workflow

• Detection of interesting event sequences

Majority of these tasks can be formalized in the terms of

following three components:

1. Event — some action or state change in the observ-

ing system, that seems interesting to us.

2. Event stream — sequence of events (possibly infi-

nite), each coming in some time moment.

3. Continuous query — persistent query over event

streams, that allows to receive new results when

they become available.

There exists a big area of stream data processing,

in which systems for defining and executing continu-
ous queries are developed. Such systems usually called

DSMS (Data-Stream Management System). Continuous

queries in them usually defined using special query lan-
guages, which are differ in expressivity. In this paper,

we will only consider tasks, whose solution can be rep-

resented as a continuous query in some query language.

Modern applications, that we discussed in the begin-
ning, also require the solution of tasks that can be rep-

resented as continuous queries, mostly for internal usage

— counting different sorts of statistics in realtime. More
specific examples will appear in the next chapter. Due

to the specificity and amounts of data, the execution of

continuous queries should be distributed, scalable and,
possibly, fault-tolerant. But so far there is a lack of sys-

tems for continuous querying of stream data, satisfying

these requirements. So the goal of the work is to propose

such a system, which will use already existing frame-
works for online computations and perform distributed,

scalable and fault-tolerant continuous query execution.

There are some choices should be done while devel-
oping such a system. The first, is the input event for-

mat. It is selected to be JSON — a standard for com-

munication between web-applications. Most of web ser-
vices today provide their API’s responses in JSON for-

mat, so they can be routed directly to the system for

querying. Moreover, JSON provides simple minimal-
overhead structure for complex events. Hence the name

of the system is follows — JSQ (JSON Stream Query-

ing). Another important choice — is a selection of con-
tinuous query language. It is more compex problem, so

we will discuss it in Section 2.

The remainder of the paper organized as follows: In
Section 2 requirements for JSQ system and it’s query lan-

guage are described. In Section 3 there are proposed JSQ

implementation details are presented. In Section 5 future
directions of work are described.

2 JSQ requirements

2.1 Continuous query languages overview

Every considered problem can be presented as contin-
uous query. Therefore set of acceptable tasks depends

on query language expressivity. Using the exprience of
real stream processing problems and existing systems,

we can formalize the set of query language features, that

require special syntax constructions. There are several
recent works on this topic. This set can be the following:

1. Accessing the event data. In many systems events

are presented and processed just as a fact of some
action happening. To distinguish events from each

other such systems have support for different event

types. But more complex approach is to allow the
use of inner event data within queries.

2. Event filtering. Events from input stream can be

filtered using various predicates on it’s inner type or

inner data.

3. New event construction. The output of continuous
query can be a valid event itself — so it can be sent

to the input of other continuous query. That allows

to express more comlex queries.

4. Grouping and data aggregation. Means that we
can partition input events using some predicate and

count statistics over resulting groups.

5. Window semantics. Counting actual statistics over

all events in input streams is often very complex
problem and not even required in majority of tasks.

But what is actually important — is the ability to de-

fine ”windows” of events to consider. There are two
ways how such windows can be parametrized. First

— is the way how their length is measured: using

last N events, or events during last N time frames
(seconds, minutes, etc). The second — is the way

how often windows are extracted from stream and

processed by the system. There are three ways:

Tumbling:

6. Detection of event patterns. The other aspect of

event analyzing besides statistics on event data —

is the detection of interesting event sequences, given
as an accepted pattern. This requires entirely differ-

ent semantics and execution model, but not interfer
with another functionality — both aspects can co-

exist in one system.

7. Integration with non-event data. While evaluat-
ing predicate or staticstics on event data, it can be

useful to employ some external data, for example,

from some database.

8. Joining multiple streams. Another important fea-

ture in some cases — is the ability to handle mul-
tiple streams and query some of them simultane-

ously, using predicates on events, similar to join

table operations in relational database management
systems.

There were presented the main features that can be

expressed with continuous query languages. According

to [1], [2], there is no system, that supports all the fea-
tures described, while every provides only some subset

of them and JSQ is not the exception.

2.2 JSQ query language description

Based on described features, we propose query langu-

gage for JSQ system. The general view of continuous

query in this language is the following:

publish
<output event description>
<filter clause>
<group clause>
<window clause>

Here the query language feature set for the JSQ pro-

totype:

1. New events construction The mandatory clause for

every continuous query in JSQ — is the definition
of resulting events, which are correct JSON events

itself. For each field in resulting event the corre-

sponding value expression should be defined. These
expressions can contain operations with incoming

event data and aggregate expressions results. Pos-

sible arithmetic operations — +, -, *, /, div, mod.
Now every expression should be defined explicitly,

but later it seems reasonably to add let clause for

common expression binding. Example:

publish
{
"field1": <expr1>,
"field2":

{
"innerfield" : <expr2>,
"arrayfield":
[<expr3>, <expr4>]

}
}

}

2. Accessing the event data

The other important part — is how data in incoming
events can be accessed. There is a standard solu-

tion — we can nest into JSON structure using field

access using dot notation (”field1”.”innerfield”) and
access array elements with the use of parenthesis

(”arrayfield”[3].”innerfield”). Access to the top-

level field is performed without any prefix, it is as-
sumed that top element of current event is in context

(to access field ”x” in top-level of event you should

simply write ”x”). Such nesting can be used in any
expressions in JSQ queries.

3. Event filtering Event filtering can performed using

the following optional clause:

where [not] <filter_expr>
[and/or [not] <filterexpr> [...]]

Filter expressions can contain any nesting into event

structure and compare fields with constant values
or other fields. It is important how values are

treated: JSQ distinguishes only three types of val-
ues: boolean, number and strings. Other possible

JSON types (object, array and null) are treated as

their string representation. On all types main com-
parison operations are defined: >,>=, <,<=,==

, ! =.

4. Grouping and data aggregation

Events can be partitioned into the groups of interest
using the group by clause and an arbitrary partition

expression:

group by <partition_expr>

The partiton expression value can have valid JSON

type (including object and array) and the new group

is created for every existing value in event stream.
For each created group special variable groupkey is

created, containing the counted partition expression

value for the group.

Moreover, while constructing result events in pub-

lish clause we can use predefined aggregate func-
tions: count, count-distinct, sum, avg, min, max.

Their value will be calculated for each group inde-

pendently. If there is no group by clause provided, it
is considered that all events share single group and

aggregates are counted over all stream (of course,

with respect to the where clause).

There is the special case for min and max func-

tions — it is clear that we often need not only the

maximum value in group, but the events where this
value is reached. So the values of these function is

JSON object themselves — and contain two fields:

”value” is the actual maximum value of partition
expression, and ”objects” — contains the array of

events, on which this value is reached.

5. Window semantics All described in previous sub-

section windows parameters can be set using the

window clause:

{sliding|tumbling} window
N (seconds|minutes|hours|events)

The first part defines the window application pol-

icy and the second — the window building policy
(events keyword sets the window to combine last

N events, all others — events from N last corre-

sponding time frames). By default, when window
clause defined, but window application policy is not

set — the type of window assumed to be sliding.
If there is no window clause presented at all, the

landmark window is used. For convenience, both

only and plural forms of keywords accepted (sec-
ond/seconds, event/events, etc)

Because JSON is a semi-structured format, every
event can have it’s own information set inside. And that

is normal case that some operations cannot be performed

over particular event (for example, we need access to the
’data’ field, which is not presented) — these events just

skipped and not participate in following computations.
The output of continuous query is a event stream itself,

and events are produced only when the result of the query

is changed.

2.3 Scalability requirements

There are some requirements for how system should be-
have in distributed environment. It should be able to exe-

cute continuous queries on clusters of arbitrary comput-

ers. This involves requirements for scalability, so adding
of additional resources into cluster should cause per-

formance increase. Another important requirement —

is fault-tolerance, so the system should be able to con-
tinue correct execution of continuous queries under situ-

ation of software or hardware fault. So the computations
from broken cluster node should be moved to others and

missed results should be re-calculated.

2.4 Targeted tasks examples

There presented two example tasks and queries for them,

for which JSQ is targeted.

2.4.1 Sale statistics

During the business processes of a company there is a

stream of sale events is generated.

And the task is to retrieve some statistics using con-
tinuous queries, such as:

Count the average current deal price of in each region

(current average price can be the average of all deals in

last hour):

{
"product name" : "ford focus",
"price" : "20000",
"quantity" : 2,
"region" : "Asia"

}

Listing 1: Sale event example

publish
[groupkey, avg("price" * "quantity")]
group by "region"

sliding window 1 hour

2.4.2 Content popularity in Twitter

Consider message stream in Twitter, where message is
metadata of every tweet.

{
"user" : "user",
"message" : "Some politic stuff",
"country": "Great Britain"

}

Listing 2: Tweet event example

Count the number of active users in each country in
each hour:

publish
{
"country": groupkey,
"count": distinct-count("user")

}
group by "country"

tumbling window 1 hour

3 JSQ prototype design

As it was said earlier, JSQ is proposed to be built on

top of existing framework for distributed online com-
putations. Now there are only two such frameworks —

Storm and S4. For this work Storm was selected. Actu-

ally, JSQ should be a code generator for execution with
Storm framework. So now let’s review the principles of

programming online computation programs using Storm

framework. To create an online computation program,
you have to define objects of three types:

1. Spouts — subprograms, that create events for the

computation. Usually they fetch information from
external sources and convert it into internal event

format.

Bolts — subprograms, that perform some part of
computations. Each of bolts consumes it’s own

event stream, and using it, produces new stream,

which is routed to the other bolts.

Topology — description of spouts, bolts, and how

events streams are routed between them. Resulting
graph called topology. It fully defines the whole

computation task.

The whole computation is automatically distributed

using Storm, because it automatically distributes copies

of bolts to machines in cluster, and each bolt can have
many instances on different cluster nodes. Besides sim-

ple execution, Storm guarantees fault-tolerant execution,

tracking correctness of processing for every particular
event. When any node survives a failure, it’s subpro-

grams are reassigned to another nodes in cluster.
Given a query, JSQ should build a topology for Storm.

Bolts and spouts needed for query execution are imple-

mented as a library. Topology for one query can be
chained with other query topologies to form more com-

plex computations. Also, JSQ query topologies can be

embedded in usual (manually) Storm topologies, simpli-
fying online processing tasks.

Such an approach was used in Gigascope[3] system

and showed it’s efficiency in telecommunication tasks.

• Query parsing and execution plan building module

• Topology building module

• Storm executor module

4 Future work

In this work we proposed the desing of JSQ system. The

next part of the work is actual development. Also, some

new features should be reviewed:

• TopK operations — Now only the search of max

and min elements is proposed, but more general task

is to find the top list of elements. This will require
some query language modifications.

• Web GUI — JSQ proposed to be used as a stan-

dalone system and it is necessary to have a GUI for

defining queries and their input streams.

• Array and string operations — Many queries de-
pend on deeper string and array data usage than

comparing them in lexicographical order — so ar-

ray iterating operations, string operations can be
added.

References

[1] Survey and Comparison of Event Query Languages

Using Practical Examples. Hai-Lam Bui, Master’s
thesis, 2009.

[2] David Luckham. A Brief Overview of the Con-

cepts of CEP. http://complexevents.com/wp-

content/uploads/2008/07/overview-of-concepts-of-
cep.pdf, 2008.

[3] Gigascope: a stream database for network appli-

cations. Chuck Cranor , Theodore Johnson , Oliver

Spataschek, ACM SIGMOD, 2003.

[4] S4: Distributed Stream Computing Platform.
http://s4.io

[5] Storm. Distributed and fault-tolerant realtime com-

putation. http://storm-project.net

