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Abstract. The article is concerned with an approach to model based
test development for large software systems. The approach presented is
a part of UniTesK test development technology, which is developed on
the background of 10-year experience of ISP RAS in verification and test
development for complex industrial software [1]. The article states that
the well-known software engineering principles underlying the approach
and aimed at coping with complexity makes possible its application in
software projects of real-life size and complexity.

1 Introduction

Revolutionary changes in software engineering during last decades have already
become a commonplace. We see that modern methods, technologies, and tools
make development of software more complex than can be even imagined 20 years
ago an everyday practice. Functionality and complexity of modern systems grows
exponentially. But this evolution has one big problem – quality control techniques
lag behind the development ones and cannot provide the same level of quality
for complex systems with manageable growth of effort.

What can help software development community in this situation? One
promising candidate is model based testing. This approach has serious advan-
tages in comparison with traditional testing techniques.

– Models and further tests can be prepared on the base of requirements and
design decisions before the other parts of software are ready. Thus, the total
time of production cycle can be decreased.

– Model based testing can help to find unimplemented features and require-
ments, which cannot be detected by implementation-based testing.

– Model based testing helps to raise the abstraction level of systematic testing
and to evaluate quickly the correctness of large subsystems or system as a
whole. Implementation-based testing can get this result only after the long
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way through the smallest units and larger components to integration and
system testing. The analogous results of ad-hoc functional testing are much
less reliable due to its unsystematic character.

– Model based testing has a potential to make manageable testing of extremely
complex systems, which cannot be adequately tested by implementation-
based techniques with an acceptable effort.

Unfortunately, most model based testing case studies deal with small and
simple systems. Such a situation is caused partially by current organizational
patterns of industrial development, but it is also related with the background
formalisms of most part of model based testing techniques. They are based usu-
ally on automata models of various kinds (FSMs, LTSs, EFSMs, etc.). Automata
models of real life software with complex functionality often have large numbers
of states and transitions making such model based testing methods unmanage-
able (this is so called ‘state explosion problem’). So, the most important state-
ment that model based testing helps to cope with increasing complexity still
needs to be corroborated.

It seems that the mankind has no other tools to cope with complexity than
the well-known software engineering principles: abstraction, modularization, and
separation of concerns. So, the search for scalable model based testing techniques
should pay attention on the following two issues.

– The models used by appropriates techniques should admit smooth integra-
tion with this principles.

– The well-scalable structure of the test system should become one of the
main concerns of the technique. There is no way to test an actually complex
system both in an adequate and simple way. But maybe we can find an
organizational approach that makes much more easy to manage the complex
work we should do in the case. Thus, simple models can help to test complex
systems only if we know how to organize them in complex structures in
manageable way.

This article provides a possible approach to manageable test construction
for complex software based on the principles stated. The approach presented is
a part of UniTesK test development technology designed in ISP RAS on the
base on 10 year experience in test development for complex industrial software.
It uses contract specifications that provide componentwise description of the
functionality of the system under test and more abstract automata models that
are used to create tests for different aspects and different parts of the system.

The next section of the article deals with main issues of the approach. The
third section presents the results of a case study. The fourth one gives a brief
overview of related works and compares them with our approach. The conclusion
summarizes the main results of the article.

2 The Approach

The approach presented here was developed for model based testing of large
systems in the context of UniTesK test development technology. It is used to
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develop functional tests checking conformance between the system and its model
and consists on the following main steps.

– Step 1. Interface definition. We define clearly the interface under test and
the abstraction level of the future testing. After this step we should have a
list of operations and events in the system under test, which should be tested
or tracked by the tests, and an understanding what should be checked in tests
and what should not, because it is considered as implementation specifics.

– Step 2. Model development. After definition of the interface we should
provide a strict definition of its properties in the form of software contracts
– preconditions and postconditions of operations and events, data integrity
constraints for all observable data types (parameters and results of oper-
ations and events). To write meaningful preconditions and postconditions
we may need the correspondingly abstracted model state also represented as
data with some integrity constraints. The model state and software contracts
provide a behavior model of the system under test on the abstraction level
chosen.

– Step 3. Adapter development. Thus we have the model and the mod-
eled system and wish to test their conformance. We need first to provide
some links between their components. Usually this task is solved by means
of adapters. In UniTesK they are called mediators for historical reasons.
Mediator of an operation implements some model operation by means of
transformation of its calls into corresponding calls of the operations of the
system under test. Mediator of an event, on the contrary, waits for the cor-
responding event in the system under test and transforms it to the model
representation.

– Step 4. Test scenario development. The description of the test is rep-
resented as a test scenario. While the main goal of behavior model is to
describe what the software under test is to do, the goal of scenarios is to
provide data for test input and test sequence generation. Each scenario has
its specific objective usually represented as a coverage level to be achieved
according to some coverage criterion. Coverage criteria are defined in terms
of the behavior model and can be considered as sets of specific situations
called coverage goals. A coverage goal corresponds to a situation where some
predicate on the model state and parameters of the model operations called
becomes true. Coverage goal can be defined explicitly by such a predicate
or implicitly by pointing out the corresponding location in the code of op-
eration’s postcondition. In the second case the corresponding predicate is
extracted automatically.
Test scenario represents another model of the system’s component under
consideration. This model is a finite state machine (FSM) or input/output
finite state machine (IOFSM) having a set of states S and a set of transitions
T. Each transition corresponds to a sequence of calls of model operations (let
us denote all possible such calls as Calls) and occurrences of model events.
Test scenario describes the generic state machine in implicit form, namely,
instead of explicit description of all SM’s states and transitions (each having
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starting state and end state), test scenario consists of the following data (in
the following Obs denotes all the observable data of both the behavior model
and the system under test).
• The data type of possible SM states S.
• The function mapping the observable data into a state st : Obs → S.

Only those states, which are actually reached during the test execution
(that is, returned by this function on some testing step) are considered.

• The function returning admissible calls of model operations in the cur-
rent state act : S ×N → Calls∗, (s, i) 7→ (c1, ...cn). The sequence of calls
(c1, ...cn) ∈ Calls∗ should be executed when the test comes to the state
s on i-th time. We require that for each s ∈ S there exists some n ∈ N
that act(s, n) is empty. Such empty sequence means that the test has
already performed all the necessary operations in this state during the
previous visits to it.

States and operation calls in particular scenario are defined in such a way
that the test objective stated can be achieved by performing a transition
tour on the state machine described.

The approach presented consistently applies three fundamental principles of
software engineering – modularization, abstraction, and separation of concerns,
to test system construction.

– Modularization.
• The system under test is considered as a number of interacting compo-

nents, which should be modeled separately. The partitioning of the sys-
tem into components is performed on several levels of abstraction and on
the highest one it can be represented as the single component. Such an
approach makes possible to achieve high quality testing of components
of one level of abstraction on the base of hypotheses on reliability of
lower-level components tested previously.
Such an approach requires from the modeling technique used to be well
modularizeable and useful on large range of abstraction levels. Contract
specifications seem to fit both these requirements more than any other
modeling formalism. After testing the conformance of a component to its
formally specified contract we can rely on this component in construction
of higher-level ones.

• Each component is tested separately from the others on the same ab-
straction level, but only after testing of lower-level subcomponents. For
the convenience of test developers operations rather close conceptually,
but without dependence on states can be composed in stateless compo-
nents and tested together. An example of such a component is group of
operations implementing primitive mathematical functions.

• The tests are also modularized. Each test consists of
∗ A test engine implementing particular algorithm of test sequence

construction for general scenario
∗ A test scenario, which provides data for test sequence construction
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∗ A number of iterators providing data for test input generation for
separate operations under test

∗ An oracle for each operation under test and each event tracked in
this test. Oracle is generated from behavior model and checks the
conformance between the actual behavior of the operation or event
and its contract.

∗ Mediators for each operation under test and each event tracked.

– Abstraction.
• Functionality of operations under test is described in the form of soft-

ware contracts on the desired abstraction level, which hide implementa-
tion specifics and make more clear essential properties of the software
under test. This makes possible construction of reusable tests, which
can be applied to any system equivalent to the original one on the cho-
sen abstraction level and to other versions of the system under test in
particular.

• Software contracts are rather flexible modeling technique capable to cap-
ture the properties required on different levels of abstraction, starting
from the particular algorithm used.
Let us consider the component implementing the functionality of ab-
stract map mapping integers to objects (in reality it can have more
specific form, like indexed records in database or pool of objects used by
Web-server). The main operations of such a map are addition of a key-
object pair bool Add(int key, object value) (returns true iff the
pair is added, false iff the key is already used in the map), check whether
a key value is already used bool ContainsKey(int key), search of an
object by its key object Get(int key) (can be called only for used
keys), and removal of a key along with the corresponding object void
Remove(int key) (can be called only for used keys). Fig. 1 in Appendix
demonstrates the detailed contract of this component in the extension
of C# language used by one of UniTesK tools, Ch@se.
We can either add more details to that specification by refining the
nature of objects stored in map, or skip some details, for example, do
not check frame conditions stating that the parts of state not touched
by the operation are preserved. Or we can abstract from stored objects
at all reducing a map described to the set of its keys.

• Test scenarios provide more abstract view on the corresponding aspect
of the system functionality. Namely, they abstract from all the details
that are not needed to construct a test sequence achieving the coverage
desired.
Test scenario can abstract the component state in different ways accord-
ing to its goals. For example, Fig. 2 in Appendix demonstrates the test
scenario for testing the map described above. It defines the state machine
with states corresponding to different numbers of key-value pairs in the
map under test. The scenario shown on Fig. 3 defines the state as the
set of integers used as keys, so it provides much more detailed testing of
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the component. Note that we need only to override State property of
test scenario to make this refinement.

– Separation of Concerns. Separation of concerns principle is implemented
both between the components that user has to develop to construct fully
functional test and between the components of the resulting tests.
• Contract specifications provide strict description of functional require-

ments to corresponding operations and events of the system under test.
They give means to check the conformance between this requirements
and the system’s actual behavior.

• Coverage criteria provide description of test adequacy criteria, which are
used to measure the adequacy of resulting tests and to aim test scenarios
at achieving high levels of testing quality.

• Mediators provide binding between model and the system under test
during test execution. Mediator transforms calls of model operations
into corresponding calls of implementation operations and transforms
the result of implementation call or event on model level.

• Iterators provide data for generation of operations’ parameters values
during test execution.

• Test scenario’s concern is to provide data for test sequence generation
during test execution.

• Test engine’s concern is to construct a needed path on the FSM implicitly
described by the test scenario used in test construction. To solve this task
it can use only the data on the already executed transitions and visited
states, so UniTesK test engines are based on algorithms for unknown
graph exploration.

This combination of fundamental software engineering principles and special
attention on modularization aspects make the approach useful for manageable
test development for large-scale software. This statement can be confirmed by
successful use of UniTesK in testing of large and complex systems.

3 The Case Study

The origin of UniTesK technology is related with telecommunication software
verification project conducted by ISP RAS for Nortel Networks in 1994-1996 [2].
The project goal was to develop a regression test suite for kernel of the operating
system of telecommunication switch. The total size of the system under test was
about 250 K lines of code. The interface under test consisted of more than 500
operations and included such functionality as arithmetic operations with basic
and extended number types, time data conversion, messaging management, pro-
cess management, synchronization management, process resources management,
and so on.

The resulting test suite partitioned the interface under test into 44 compo-
nents (in this case it was groups of operations dependent from each other), from
which 29 components were statefull. Total size of the specification written is
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about 60 K lines of code. Total size of code of mediators developed is about
50 K lines. 372 test scenarios were developed, 304 for state-independent oper-
ations and 68 for statefull components. Their total size is about 80 K lines of
code. The total effort of the project was about 10 man-year (the total effort of
development of the system under test is about ten times more).

The test suite developed was used for regression testing of the OS kernel
till 2000. It was useful not only the regression test suite, since more than two
hundred errors were found in the field version of the OS with its help and several
dozens of them were showstoppers – they required cold restart of the system to
restore it in the operating state.

4 Related Works

Author knows only several works concerned with model based testing of large
software. The bibliography analysis shows that the most part of model based
testing society tends to work with toy and small-size examples. This is really
unfortunate for propagation of model based approach to testing in the indus-
try, since most significant problems of traditional testing techniques are related
with large-scale and complex systems. One cause of such a situation is V-model
stereotype for software development, which seems to prescribe test development
in the inverse order to the main development activity – unit tests first, then tests
for larger units and components, then integration tests, and only them system
tests. The author thinks that complexity and gigantic size of modern systems
urgently requires new test development techniques that can be started on high
or intermediate design level.

The first group of works related with the large-scale model based testing is
concerned with architecture-based testing. The works of A. Bertolino, P. Inver-
ardi and H. Muccini [3–6] and related article of D. Richardson and A. Wolf [7] use
informal architecture-level description of software under test to construct LTS
models for different aspects of the software and then derive tests from them.
Their approach mostly focused on integration testing and checking the interac-
tion of large components of the system under test. UniTesK approach presented
in this article can be used both for unit testing and for integration testing. One
more difference of the two approaches lies in the models used – UniTesK uses
contract specifications for low-level descriptions and FSMs (along with IOFSMs)
for higher-level modeling, and the authors cited use LTSs for both detailed and
abstracted descriptions.

The other group of works on testing complex software systems known to the
author is related with Côte de Resyste project [8–11]. The participants of this
project developed the techniques and tools (TorX and TGV) capable to con-
struct model based tests from the LTS models and user defined test purposes.
The tools were successfully used in testing real-life software applications. The
most prominent is using TorX in testing the Oosterschelde Storm Surge Bar-
rier control software, which code size is about 80 K lines. The approach used in
Côte de Resyte tools is close to the one presented in this paper. Main differences
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are related with use of contract specifications and coverage criteria based on
them in UniTesK and use of only LTS models in Côte de Resyste. The works of
J. Tretmans are mostly focus on formal definition of tested conformance rela-
tion between model and implementation. The relation used in UniTesK is more
complex, since it includes contract specifications. Some details on this topic can
be found in [12].

5 Conclusion

The UniTesK approach for model based testing was designed on the base of a
well-known set of principles that are aimed at coping with complexity. This helps
to use it for large-scale software testing with effort comparable with traditional
test development, but with much higher quality of resulting software. It also
includes techniques for modeling concurrency and timing properties of tested
software in an environment familiar for industrial developers [13]. In addition
UniTesk tools are based on extensions of widely used programming languages.
That fact facilitates introduction of the approach into industrial processes.

The results of case studies [14] of using the approach to test industrial soft-
ware of various domains show its applicability for a large variety of contexts.
Now its case study database includes, besides kernel verification project pre-
sented above, test development for several different IPv6 implementations, bank-
ing client management software system based on J2EE and Web technologies,
messaging systems, device drivers, etc.

Of course, studies on the approach applicability to various project types and
comparative evaluation of effort needed to develop tests using different tech-
niques should be continued. But the data we already have demonstrate that
model based testing can provide actual help in development of modern software
systems having complex functionality and intractable by means of traditional
testing methods.
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6 Appendix

Appendix contains the example of specifications of a component implementing
map mapping integers to objects. Specification is written in the extension of
C# used by one of UniTesK tools. Two examples of test scenarios for the same
component are also presented here.
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namespace Chase.Examples {
specification public class IntToObjectMapSpecification {

public Hashtable items = new Hashtable();

invariant I( "Keys are integers" ) {
foreach(object o in items.Keys)
if(!(o is int)) return false;

return true;
}

specification public bool Add( int key, object value )
reads key, value
updates items

{
post {

if(!items.Keys.Contains(key)) {
branch UnusedKey( "The key is not used" );
Hashtable old = (Hastable)(items.Clone());
old.Remove(key);
return $this.Result == true && old.Equals(pre items.Clone());

} else {
branch UsedKey( "The key is used" );
return $this.Result == false && items.Equals(pre items.Clone());

}
}

}

specification public bool ContainsKey( int key )
reads key, items

{
post {

branch Single( "Single branch" );
return $this.Result == items.Keys.Contains(key)

&& items.Equals(pre items.Clone());
}

}

specification public object Get( int key )
reads key, items
updates items

{
pre { return items.Keys.Contains(key); }
post {

branch Single( "Single branch" );
return $this.Result == items[key]

&& items.Equals(pre items.Clone());
}

}

specification public void Remove( int key )
reads key
updates items

{
pre { return items.Keys.Contains(key); }
post {

branch Single( "Single branch" );
Hashtable old = (Hastable)(pre items.Clone());
old.Remove(key);
return old.Equals(items);

}
}

}
}

Fig. 1. Example of specifications in C# extension
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namespace Chase.Examples {
scenario public class MapTestScenario {

public static void Main() {
Tracer.Init();
MapTestScenario test = new MapTestScenario( 13 );
test.Run();
Tracer.Finish();

}

IntToObjectMapSpecification target = new IntToObjectMapSpecification();
int maxNumber = 10;

protected virtual void configureMediators() {
target = mediator IntToObjectMapMediator( new IntToObjectMap() );
target.AttachOracle();

}

public MapTestScenario( int maxNumber ) {
Engine = new Chase.Engines.DFSWithSCEngine();
this.maxNumber = maxNumber;
configureMediators();

}

public override Chase.Lang.ModelObject State {
get { return new Chase.States.IntState( target.items.Count ); }

}

scenario Add() {
if( target.items.Count < maxNumber )

iterate( int i = 0; i < maxNumber; i++; )
target.Add(i, new object());

return true;
}

scenario Contains() {
iterate( int i = 0; i < maxNumber; i++; ) target.ContainsKey(i);
return true;

}

scenario Get() {
iterate( int i = 0; i < maxNumber; i++; )

if(target$Get.pre(i)) target.Get(i);
return true;

}

scenario Remove() {
iterate(int i = 0; i < maxNumber; i++; )

if(target$Remove.pre(i)) target.Remove(i);
return true;

}
}

}

Fig. 2. Example of test scenario in C# extension
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namespace Chase.Examples {
scenario public class DetailedMapTestScenario : MapTestScenario
{

public static void Main() {
Tracer.Init();
MapTestScenario test = new DetailedMapTestScenario( 5 );
test.Run();
Tracer.Finish();

}

public DetailedMapTestScenario( int maxNumber ) {
base(maxNumber);

}

public override Chase.Lang.ModelObject State {
get {

IntSetState state = new IntSetState();
foreach(object o in target.items.Keys)

state.Add( o as int );
return state;

}
}

}
}

Fig. 3. Example of more detailed test scenario in C# extension
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