
Transaction Management for XML Stored in

Relational Database Systems⋆

Peter Pleshachkov

Institute for System Programming RAS, Russia
peter.pleshachkov@gmail.com

Abstract. Nowadays, modern commercial relational database manage-
ment systems (RDBMS) enable functionality to store, query and update
XML data. One of the key problems is efficient handling of concurrent
access to XML data stored in RDBMS.
In this paper, we present an efficient concurrency control method for
XML data stored in RDBMS. Our approach is based on Grabs et. al.
work on XMLTM, an XML transaction manager built on top of RDBMS.
We investigate limitations and drawbacks of XMLTM, and propose solu-
tions to overcome them. The paper summarizes our results to date and
identifies directions for future work.
The goal of our research is efficient and general transaction manager for
concurrent XML processing in RDBMS.

1 Introduction

Today a lot of applications use XML to store and exchange data. Their amount
is quite significant and continues to grow.

To answer new requirements, most commnercial RDBMS vendors extend
their products with XML support. Current systems (e.g. MS SQL Server 2005)
use binary large objects (BLOBS) to store XML documents in a certain internal
format. Users can create special indices on XML documents to speed up queries.
The systems enable specialized query languages support such as XQuery/XPath.

However, current implementations use internal RDBMS locking for concur-
rency control. This approach means that the granularity of locking is the whole
XML BLOB, while access is made only to some XML nodes in it. Obviously this
creates a bottleneck when concurrent access is an issue.

To solve this problem Grabs et. al. [3] proposed to use multilevel transaction
management[10]. According to this approach, an additional transaction man-
ager XMLTM is built on top of RDBMS. It schedules concurrent updates and
queries using DGLOCK protocol. XMLTM decomposes XML transaction into
a number of small independent transactions over RDBMS. They are called DB
transactions. And as XMLTM can commit DB transactions early, the locks on
the entire BLOB are released early thereby allowing other transactions waiting

⋆ This work was partially supported by the grant of the Russian Basic Research Foun-
dation (RBRF) N 05-07-90204-b.

for the locks to proceed. Moreover, DB transactions are run at a lower ANSI
isolation level (Read Commited). These factors allow to improve the parallelism
of XML transactions.

We consider this approach to be the most promising, since XMLTM does
not rely on the underlying storage scheme used by relational databases for XML
documents. This means that it will work even for native XML databases.

Unfortunately there are certain limitations and drawbacks in the Grabs
method. Namely: (1) supported query language is a restricted version of XPath,
whereas modern RDBMSs support more flexible and powerful XQuery language,
(2) DGLOCK protocol is based on multi-granularity locking scheme [4], which is
too restrictive for a wide range of XML-operations and (3) DGLOCK does not
guarantee serilizability of produced schedules. Also (4) XMLTM does not sup-
port ordered XML and (5) performance of updates degrades due to significant
overhead needed to log before-images of updated documents by XMLTM.

The goal of our research is to overcome these XMLTM drawbacks and lim-
itations and design a more efficient and general transaction manager called
SXTM (Semantic XML Transaction Manager) for concurrent XML processing
in RDBMS. The key contributions of our research are:

– We proposed a locking protocol to schedule XML transactions, which ex-
ploits the semantics of XML queries and updates to improve the degree of
concurrency in comparison with original DGLOCK protocol.

– We introduced a way to reduce a size of log which is needed to guarantee
atomicity of XML transactions.

The remainder of the paper elaborates our contributions in Section 2. In
Section 3 we discuss previous work on concurrency control for XML data. In
Sect 4 we give directions for future work and make conclusions.

2 Results to Date

2.1 Preliminaries

In SXTM we use XQuery to query XML documents. To update XML documents
we use primitive update operations like insert, delete and rename. It is clear,
that any complex update operation may be expressed via these operations. We
consider three kinds of insert operations. The operations InsertInto(locpath,
constr), InsertAfter(locpath, constr) and InsertBefore(locpath,constr)

insert new node defined by constr as the last child, following sibling and preced-
ing sibling respectively for each target node defined by locpath. Here Locpath

(location path) is the basic operation used both in XQuery queries and update
operations. The operation Delete(locpath) removes the target subtrees defined
by locpath. The operation Rename(locpath, QName) assigns new name defined
by QName to the target nodes defined by locpath. We denote the intermidiate
nodes and destination nodes of Locpath as ITM and DST respectively. Below in

this paper, we use II , IA, IB, RN, D and LP to denote InsertInto, InsertAfter,
InsertBefore, Rename, Delete and Locpath operations respectively.

In the Fig. 1 we present a sample of XML document Gtree, its DataGuide
and DTD. We will use Gtree document in all examples throughout the paper.

doc

person

@age name addr child hobby

person

name addr hobby

n1

n2

n3 n4 n5 n6 n7

n8

n10 n11 n12

<doc>
<person age = '55'>
 <name>Peter</name>
 <addr>Old Street, 25</addr>
 <child>
 <person>
 <name>John</name>
 <addr>UStreet, 16</addr>
 <hobby>swimming</hobby>
 <hobby>cycling</hobby>
 </person>
 </child>
 <child>
 <person>
 <name>Robert</name>
 <addr>Old Street, 25</addr>
 </person>
 </child>
</person>
<person age='20'>
 <name>Mary</name>
 <addr>Quensway, 34</addr>
 <hobby>painting</hobby>
</person>
</doc>

<!ELEMENT doc (person)*>
<!ELEMENT person (name, addr, (hobby)*,
(child)*)? >
<!ATTLIST person age CDATA #IMPLIED>
<!ELEMENT child person>
<!ELEMENT name #PCDATA>
<!ELEMENT addr #PCDATA>
<!ELEMENT hobby #PCDATA>

Fig. 1. An XML document GTree, its DataGuide and DTD

2.2 XDGL2 Locking Protocol

In this section we present a high level overview of new locking protocol called
XDGL2. Except for some refinements, the XDGL2 protocol is based on our
XDGL protocol presented in [8].

XDGL2 requires transaction to follow the strict two-phase locking protocol
(S2PL)[12]. According to S2PL, a transaction acquired a lock keeps it until the
end.

In SXTM we maintain the DataGuide (DG for short) structure for lock-
ing purposes rather than the document iself as the document is not physically
available. A DG describes every unique label path of a document exaclty once,
regardless of the number of times it appears in that document, and encodes no
label path that does not appear in the document. Exactly by utilizing DG as
a locking structure we abstract from underlying storage scheme used for XML
documents in DBMS. Thus, this generalizes the method.

To cope with deadlocks we use deadlock detector which periodically builds
wait-for graph[11] of the transactions and analyzes it for cycles. When a cycle is
found, a victium is selected and aborted.

There are two kinds of locks in XDGL2: structural locks and logical locks
which we describe in the following subsections.

Structural locks

– P (pass) lock. This node lock is used by LP operation. It is set on the DG’s
nodes which match the ITM nodes of LP. This lock prevents the deletion of
ITM nodes by other transactions, but it does not prohibit any insertion of
the nodes extending the sequence of ITM nodes (see example 1 below).

– S (share) lock. This node lock is also used by LP operation. It is set on
the DG’s nodes which match the DST nodes of LP. This lock prevents any
modifications of DST nodes. For example, for query count(/doc/person) S

lock is set on node n2 (see Fig. 1).

– SI (shared into) lock. This node lock is used by II operation. It is set on
the DG’s nodes which match the target nodes of II. This lock prevents
the modification of II’s target nodes and insertion of another nodes into
the target nodes by concurrent transactions. The SA (shared after) and SB

(shared before) locks are defined in a similar way.

– XN (exclusive new) lock. This node lock is used by insert operations. It is set
on the DG’s node which matches the newly created nodes. This lock allows
passing by the new node, (i.e it compatible with P lock), but other operations
(e.g. modidfication) on the node are prohibited.

– X (exclisive) lock. This node lock is used by operations which modify internal
nodes of the document. This lock prevents any concurrent reads and updates
of the node. In our set of update operations this lock is used by RN operation
since it renames the target nodes inside the document. It is set on the DG’s
nodes which correspond to the RN’s target and new nodes. Note, if we rename
the leaf node then we only need to acquire X lock on the RN’s target nodes
and XN lock on the new nodes.

– ST (shared tree), XT (exclusive tree) locks. The ST (XT) lock is a tree lock. The
ST (XT) lock is set on the DG’s node and implicitly locks all its descendants.
The ST (XT) lock prevents any updates (reads and updates) in the entire
subtree. For example, XT lock is set on target nodes of D operation.

– IS (intention shared), IX (intention exclusive) locks. The IS lock must be
obtained on each ancestor of the node, which is to be locked in one of the
shared modes. It ensures that there are no locks on the coarser granules
locking the node in conflicting mode. IX lock is defined in a similar way.

To deal with value-based constraints, each structural lock has an annotated
value-based predicate1. The XDGL2 compatibility matrix for structural locks is
shown in the Fig. 2. There are no strict incompatibilities in matrix. Symbol CP
(check predicates) in matrix means that the requested lock is compatible with
granted locks only if conjunction of annotated predicates is not satisfiable.

Next we study a couple of examples to illustrate the locking mechanisms2.

Example 1. Let us consider transactions T1={II(/doc ,<person/>)}, T2={

II(/doc,<person/>)} and T3={/doc/person/name}. According to XDGL2 the
following sets of structural locks {n1: (SI, IX), n2: XN}, {n1: (SI, IX),

n2: XN} and {n1: P, n2: P, n4: ST} must be obtained by transactions T1, T2
and T3 respectively. Thus, we obtain that T1, T3 and T2, T3 can run concurrently
whereas T1 and T2 can not run concurrently due to the conflict of SI locks on
node n1.

1 In XDGL2 we annotate locks only with simple predicates (conjunction of compar-
isons with constants)

2 Note, that in example 2 we omit logical locks

requested S P SI SA SB XN X ST XT IS IX

S + + + + + cp cp + cp + +

P + + + + + + cp + cp + +

SI + + cp + + cp cp + cp + +

SA + + + cp + cp cp + cp + +

SB + + + + cp cp cp + cp + +

XN cp + cp cp cp + cp cp cp + +

X cp cp cp cp cp cp cp cp cp + +

ST + + + + + cp cp + cp + cp

XT cp cp cp cp cp cp cp cp cp cp cp

IS + + + + + + + + cp + +

IX + + + + + + + cp cp + +

granted

Fig. 2. Lock Compatibility Matrix

Example 2. For transactions T1=D(/doc/person/@age)} and T2={for $v in

//person return <name2>{$v/ name}</name2>} we need to obtain the sets of
structural locks {n1: (IX, P), n2: (IX, P),n3:XT} and {n1: IS, n6: IS,

n2: S, n8: S, n4: ST, n10: ST} respectively. Since locks required by T1 and
T2 are compatible, we conclude that T1 and T2 can be executed concurrently
(thus we prevent document order conflict).

Note, that DGLOCK from XMLTM does not allow concurrent executon of
transactions from examples 1 and 2.

Logical Locks Now we turn to the discussion of the logical locks, which are
used to prevent phantoms. Let us show how a phantom could appear. Suppose
that transaction T1 reads all of age attributes in GTree(i.e. T1 issued //@age
query). In the meantime transaction T2 inserts new age attribute into person
element with name ’John’ (see Fig. 1). The new age attribute is the phantom for
transaction T1. Generally speaking, phantoms can appear when update operation
extends the DG3 (adds new path to DG) and this modification results in the
changing of target nodes of previously executed operations.

Thus, we introduce two locks. The first lock is L (logical) lock, which must
be set on DG’s node to protect the node’s subtrees in the document from a
phantom appearance. A logical lock specifies a set of properties. Essentially, a
property is a logical condition on nodes. This lock prohibits the insertion of new
nodes, which possess these properties. The second lock is IN (insert new node)
lock, which specifies the properties of new node. The update operation, which
extends the DG, should obtain the IN lock on each ancestor of the new node.

Here we list all possible combinations of properties for L lock: (1) node-
name=’name1’ (e.g. //person), (2) node-name=’name1’, node-value relop ’val1’
(e.g. //name[.6=’John’]), (3) node-name=’name1’, child-name=’name2’, child-
value relop ’val1’ (e.g. //person[name 6= ’John’]). Here relop is a comparison
operation.

To check that the new node’s properties do not interfere with the L lock
properties, the IN lock should specify three properties of a new node: new-node-
parent-name, new-node-name, new-node-value.

Thus, L and IN locks are incompatible if one of the following conditions holds:

3 In our set of update operations II, IA, IB and RN operations can extend the DG.

– If IN’s new-node-name equals to a node-name of L lock and L does not contain
any other properties (case (1) from the above)4.

– If IN’s new-node-name and new-node-value both match appropriate values
of L lock consisting of two properties. That is, node-name=new-node-name
and new-node-value relop ’val1’ 6= #f (case (2) from the above).

– If all IN’s properties match three properties of L lock. That is node-name=new-
node-parent-name, child-name=new-node-name and new-node-value relop
’val1’ 6= #f (case (3)).

If node’s name is a wildcard ’*’ then it equals to any node-name.

DTD-based Concurrency Enhances We already discussed the benefits we
got by utilizing the DG for locking. However, there are some drawbacks. The
problem with DG is that it lacks the notion of document order. Therefore, the
evaluation of ordered-based axes (e.g. preceding-sibling, following-sibling) on DG
may result in the lock of unnecessary DG nodes. As a consequence, we can get
unnecessary conflicts among transactions.

To reduce the number of such conflicts we use DTD, which specifies the
document order. For instance, on the basis of the GTree’s DTD information
<!ELEMENT person (name, addr, (hobby)*, (child)*)?!>we can resolve the
conflict between transactions T1={/doc/person/addr/preceding-sibling::*}
and T2={D(/doc/person/hobby)}. Indeed, without DTD information T1 must
acquire ST lock on all DG’s nodes of level 2 (n3, n4, n5, n6, n7), whereas T2 must
obtain XT lock on node n7 of level 2. Thus, there is a conflict between T1 and T2

on node n7. But using DTD we know that preceding sibling of addr element can
only be name element, and T1 must acquire ST lock only on node n4 thereby
allowing T2 to run concurrently.

Correctness

Theorem 1. All schedules of concurrent transactions generated by XDGL2 sched-
uler are serializable.

Formal proof of this theorem is available in [9].

2.3 Atomicity of XML transactions

Decomposing XML transaction into a number of independent DB transactions,
we can no longer implement XML transaction’s abort by RDBMS[10]. Only
active DB transactions can be rolled back by RDBMS. For this reason, XMLTM
logs the before-images of updated XML documents. An abort is implemented
by restoring old text value of the document. Since the logging granularity in
XMLTM is greater than the locking granularity the cascading aborts are possible.

4 In case of RN operation we compare only new-node-name property of IN lock with
node-name property of L lock. Another properties of IN lock are not considered.

We propose a new way to guarantee atomicity of XML transactions, which
allows to reduce the size of log significantly. For clear presentation and because
of space limitations we consider only insert and delete operations.

To undo the insert operations we propose to log reverse operations, which
delete the inserted nodes. As a consequence, an extra logging overhead for insert
operations is low. This way for II(/doc/person, <name/>) operation we write
into the log only D(/doc/ person/name[position=last()]). Similarly, for op-
eration IB(/doc/person/hobby, <addr/>)we need to log D(/doc/person/addr::
preceding-sibling[position()=1]) operation.

An undo of D is somewhat more difficult and expensive - we need to log both
the before-images of deleted subtrees and their positions in the document. Thus,
before executing D operation we need to execute preliminary query, which ex-
tracts needed information and then write its results into the log. For instance, for
D(/doc/person[name=’John’]) the preliminary query is for $node at $pos

in /doc/person where $node/name = ’John’ return ($node, $pos). Here
$node variable is bound with the deleted subtree, whereas $pos defines the posi-
tion of the subtree. To undo this D operation we will execute the following query
for each $node: IA(/doc/node()[postion()=$pos-1], $node).

Note that no extra logging is needed for the last DB transaction since its
commit means the end of XML transaction. We use this fact to reduce a signifi-
cant logging overhead incured by D operation. We propose to execute D operation
in the following way (1) if an operation op in XML transaction preceded by D

operation depends on the results of D than execute D before op’s execution, (2)
else execute D operation in last DB transaction 5.

3 Concurrency Control for Native XML DBMSs: Related

Work

The protocol developed in [2] relies on the fact that XML is usually accessed by
means of XPath query language. They propose to use ”path locks” to increase
concurrency and provide the best results for XPath queries. Unfortunately, the
authors deal with too restrictive subset of XPath.

The method presented in [7], proposes a XLP (XPath Locking Protocol)
locking protocol, which is based on XPath model and has the features of richer
lock modes, refined lock granualrity and lower lock conflict. Another XPath-
based protocol was proposed by Choi et al.[1]. The protocol assumes that an
XML document is modeled as a tree structure. Three versions of XML document
are maintained. Concurrency Control is implemented by using read-write check
and write-read check. Unfortunately, these checks are very expensive operations.
The protocol was limited to theoretical design.

Several protocols [5], [6] based on the DOM operations were proposed. The
protocols use different kinds of locks to latch nodes on different levels. These
seem to work fine for DOM operations, but there is no research done to see
whether they could suite well the evaluation of path expressions.

5 Actually, we execute last DB transaction on the users COMMIT command.

Moreover, all these methods require direct access to the XML document,
which is not possible in mant cases.

4 Conclusion and Future Work

This thesis is centered around the transaction management for XML stored in
RDBMSs. The main goal of our research is efficient and general transaction
manager for concurrent XML processing in RDBMS.

We start with a detailed analysis of existing solutions depicting those as-
sumptions, techniques, limitations and drawbacks. In an attempt to eliminate
limitations and drawbacks the thesis presents a new XDGL2 locking protocol
and a new way for logging high level XML-operations to guarantee atomicity of
XML transactions.

Utilizing DataGuide as a locking structure, we abstract from underlying stor-
age scheme used for XML documents in RDBMS. Different types of locks on
DataGuide structure are proposed to capture the semantics of XML operations
thereby allowing to improve the degree of concurrency in comparison with exist-
ing solutions. Unlike previously proposed solutions, our protocol ensures strict
serilizability and combines predicate and logical locks to provide protection from
phantoms appearance.

The paper presents an approach how to reduce the overhead incured by extra
logging. We use a combination of logical logging and delayed execution of delete
operations, which allows to undo delete operations using RDBMS’s recovery
functionality.

Finally, the proposed Semantic XML Transaction Manager is primarily being
implemented on top of MS SQL Server 2005 and in our next steps, we concentrate
on its comprehensive experimental study.

References

1. E. H. Choi and T. Kanai. XPath-based Concurrency Control for XML Data. In
Proc. DEWS 2003, 2003.

2. S. Dekeyser and J. Hidders. Path Locks for XML Document Collaboration. In
Proc. WISE 2002, Singapore, 2002.

3. T. Grabs, K. Bohm, and H.-J. Schek. XMLTM: Efficient Transaction Management
for XML Documents. In Proc. ACM CIKM 2002, USA, 2002.

4. J. Gray et al. Granularity of locks in a large shared databases. In Proc. VLDB
1975, USA, 1975.

5. M. Haustein and T. Haerder. Adjustable Transaction Isolation in XML Database
Management Systems. In Proc. XSym 2004, LNCS 3186, 2004.

6. S. Helmer, C.-C. Kanne, and G. Moerkotte. Evaluating lock-based protocols for
cooperation on XML documents. SIGMOD Record, 33(1), 2004.

7. K.-f. Jea et al. Concurrency Control in XML Document Databases: XPath Locking
Protocol. In Proc. ICPADS 2002, Taiwan, 2002.

8. P. Pleshachkov, P. Chardin, S. Kuznetsov. XDGL: XPath-Based Concurrency Con-
trol Protocol for XML Data. Proc. BNCOD 2005, LNCS 3567, Sunderland, UK.

9. P. Pleshachkov, P. Chardin, and S. Kuznetsov. A DataGuide-Based Concurrency
Control Protocol for Cooperation on XML Data. In Proc. ADBIS 2005, LNCS
3631, 2005.

10. G. Weikum. Principles and Realization Strategies of Multilevel Transaction Man-
agement. ACM Transactions on Database Systems (TODS), 16(1), 1991.

11. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers Inc., 1992.

12. K. P. Eswaran et al The notions of consistency and predicate locks in a database
systems. Comm of ACM, Vol. 19, No 11, pp. 624-633, November 1976.

